por elisafrombrazil » Dom Abr 16, 2017 11:17
Calcule o volume do sólido obtido pela rotação da região limitada por y = x - x² e y = 0 em volta da reta x = 2.
-
elisafrombrazil
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sáb Dez 31, 2016 10:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integrais] Volume de um sólido obtido por rotação
por Leon » Sex Dez 05, 2014 16:05
- 1 Respostas
- 3458 Exibições
- Última mensagem por Leon

Sex Dez 05, 2014 16:52
Cálculo: Limites, Derivadas e Integrais
-
- volume de sólido por rotação
por hmspriss » Qui Set 23, 2010 11:13
- 1 Respostas
- 2508 Exibições
- Última mensagem por MarceloFantini

Sex Set 24, 2010 01:32
Cálculo: Limites, Derivadas e Integrais
-
- volume gerado pela rotaçao
por edilaine33 » Dom Dez 01, 2013 09:01
- 1 Respostas
- 1954 Exibições
- Última mensagem por Bravim

Seg Dez 02, 2013 02:29
Cálculo: Limites, Derivadas e Integrais
-
- Volume de Sólido pela Rotação em torno do Eixo y.
por diegodiscovery » Dom Jun 13, 2010 16:27
- 0 Respostas
- 3260 Exibições
- Última mensagem por diegodiscovery

Dom Jun 13, 2010 16:27
Cálculo: Limites, Derivadas e Integrais
-
- [Volumes de sólidos por rotação] Volume mudando os eixos
por Edmond Dantes » Sáb Out 20, 2018 11:31
- 2 Respostas
- 5654 Exibições
- Última mensagem por Edmond Dantes

Sáb Out 20, 2018 16:40
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.