• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão

Questão

Mensagempor Drielle » Sáb Abr 08, 2017 20:20

Seja log 2=0,301 . Efetuando-se 50 elevado a 50, obtemos um valor cuja quantidade de algarismos é
Drielle
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 08, 2017 19:40
Formação Escolar: ENSINO MÉDIO
Área/Curso: Pré militar
Andamento: cursando

Re: Questão

Mensagempor Cleyson007 » Qua Abr 12, 2017 23:08

O nº de algarismos de um número é obtido por meio do log(na base 10) desse número. Caso seja preciso arredondamento arredonda-se para cima.

Sabendo que as propriedades (1) "O expoente de um logaritmo pode ser passado para frente do log multiplicando-se" e (2) "O logaritmo do quociente pode ser reescrito como a diferença entre o log do numerador pelo log do denominador:

(1) log x^p = p log x
(2) log(x/y) = log x - log y

Dessa forma,

log 50^50
=50 * log 50 (Usando a propriedade (1))
=50 log(100/2)
=50 (log 100-log2)
Fazendo uso da propriedade 2, tem-se:
=50 (2-0.301)
=84.95

Ou seja, 85 (arredondado para cima)
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.