por elisafrombrazil » Sáb Jan 21, 2017 10:41
Utilize o Teorema do Valor Intermediário para mostrar que a equação

possui pelo menos uma solução no intervalo
![[-1,1] [-1,1]](/latexrender/pictures/d060b17b29e0dae91a1cac23ea62281a.png)
.
-
elisafrombrazil
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sáb Dez 31, 2016 10:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Qui Fev 02, 2017 15:56
Erro de sinal talvez no coeff. do x^2 .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por elisafrombrazil » Qui Fev 02, 2017 22:07
Realmente o sinal do termo independente está trocado -> -1.
-
elisafrombrazil
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Sáb Dez 31, 2016 10:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Qui Fev 02, 2017 23:38
Neste caso , note que a soma dos dois monomios de graus maiores é sempre

(pois

) .Como queremos que

, basta então tomar

tal que

. Por exemplo ,

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Qui Fev 02, 2017 23:41
Para obter

tal que

é trivial ! Termine ...
Obs.: Está implicito que

denota a expressão do lado esquerdo da eq. sujeito a sua correção do sinal .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Teorema do Valor Intermediário (TVI)
por jemourafer » Sex Abr 13, 2012 14:51
- 1 Respostas
- 1832 Exibições
- Última mensagem por MarceloFantini

Sáb Abr 14, 2012 00:17
Cálculo: Limites, Derivadas e Integrais
-
- Teorema do Valor Intermediário
por MCordeiro » Ter Mai 26, 2020 23:00
- 0 Respostas
- 2179 Exibições
- Última mensagem por MCordeiro

Ter Mai 26, 2020 23:00
Cálculo: Limites, Derivadas e Integrais
-
- Duvida no Teorema do valor intermediário.
por TheoFerraz » Sáb Abr 30, 2011 19:32
- 2 Respostas
- 2879 Exibições
- Última mensagem por TheoFerraz

Sáb Abr 30, 2011 19:40
Cálculo: Limites, Derivadas e Integrais
-
- [Continuidade] Problema de Valor Intermediário
por Imscatman » Seg Out 03, 2011 00:18
- 3 Respostas
- 2137 Exibições
- Última mensagem por Imscatman

Seg Out 03, 2011 02:12
Cálculo: Limites, Derivadas e Integrais
-
- Teomera do valor intermediário - exercício
por Danilo » Sáb Set 14, 2013 14:05
- 0 Respostas
- 1243 Exibições
- Última mensagem por Danilo

Sáb Set 14, 2013 14:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.