por Hoteri » Seg Dez 05, 2016 23:56
Boa noite, amigos. Há muito tempo tento resolver este problema:
Seja

. Considere

. Calcule

se

e

.
Primeiramente, calculei

:

E, então,

:

Não sei se estou fazendo isto corretamente. Sou novo nesta área do Cálculo e, no meio do caminho da resolução, sinto que me perdi e não sei como prosseguir a partir daqui ou relacionar com os dados disponibilizados no enunciado. Agradeço a ajuda desde já.
-
Hoteri
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Dez 05, 2016 23:39
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por adauto martins » Qui Dez 08, 2016 09:09
primeiramente vamos encontrar uma expressao para

usando as condiçoes a),b)...
a diferencial total de

é dado por:

...com a condiçao b)teremos:

,onde c é devido a integraçao indefinida...usando a condiçao a)

,logo:


,usandos as outras condiçoes procede-se o calculo da derivada mista,calcule-o...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Cálculo II - Regra da Cadeia para várias variáveis
por Guga1981 » Qua Nov 11, 2020 02:22
- 3 Respostas
- 3919 Exibições
- Última mensagem por Guga1981

Dom Nov 22, 2020 05:02
Cálculo: Limites, Derivadas e Integrais
-
- Regra da Cadeia 3 Variaveis Urgente
por Silva339 » Ter Mar 19, 2013 22:27
- 2 Respostas
- 2352 Exibições
- Última mensagem por Silva339

Qua Abr 03, 2013 18:24
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo de derivada com várias variáveis
por Fernandobertolaccini » Sex Dez 19, 2014 17:28
- 1 Respostas
- 2141 Exibições
- Última mensagem por adauto martins

Qui Dez 25, 2014 13:09
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo de derivada com várias variáveis
por Fernandobertolaccini » Sex Dez 19, 2014 17:33
- 1 Respostas
- 1862 Exibições
- Última mensagem por adauto martins

Ter Dez 23, 2014 16:28
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo de derivada com várias variáveis
por Fernandobertolaccini » Sex Dez 19, 2014 17:44
- 2 Respostas
- 2223 Exibições
- Última mensagem por adauto martins

Qua Dez 24, 2014 11:36
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.