Alguém pode ajudar nesta? Sejam Pn, P2n e P3n os produtos dos n, 2n e 3n primeiros termos, respectivamente, de uma progressão geométrica cujo primeiro termo a1 e cuja razão q são números reais não nulos. Então, o quociente P3n/(Pn.P2n) depende: (Resposta: C)
a) apenas de n.
b) apenas de a1 e n.
c) apenas de q e n.
d) de q, a1 e n.
e) nem de q, nem de a1, nem de n.

![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)