por eu_dick1 » Seg Nov 14, 2016 20:23
O exercício pede para calcular a área da região delimitada entre três funções:

,

e

. Como eu faço pra calcular esse tipo de área? Eu tenho que calcular a área de dois em dois e no final faço a diferença das áreas, ou tem alguma maneira de se fazer isso direto?
- Anexos
-

- Gráficos
- Capturar.PNG (9.85 KiB) Exibido 3028 vezes
-
eu_dick1
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sáb Mai 17, 2014 01:05
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ensino Médio
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Funções Com mais de uma Variavel
por Silva339 » Seg Abr 01, 2013 10:55
- 1 Respostas
- 1175 Exibições
- Última mensagem por young_jedi

Seg Abr 01, 2013 13:58
Funções
-
- Funções com mais de uma variável - curvas de nível
por Victor Mello » Sex Fev 21, 2014 14:23
- 2 Respostas
- 1727 Exibições
- Última mensagem por Victor Mello

Sex Fev 21, 2014 20:53
Funções
-
- Área entre a curva
por mayconf » Sex Mai 31, 2013 14:26
- 1 Respostas
- 1552 Exibições
- Última mensagem por e8group

Sex Mai 31, 2013 15:35
Cálculo: Limites, Derivadas e Integrais
-
- Relação entre ângulo e área
por Cleyson007 » Qua Abr 21, 2010 16:24
- 1 Respostas
- 1450 Exibições
- Última mensagem por MarceloFantini

Qua Abr 21, 2010 18:31
Trigonometria
-
- Integrais e área entre curvas
por Victor Mello » Ter Nov 19, 2013 21:58
- 2 Respostas
- 2007 Exibições
- Última mensagem por Victor Mello

Qua Nov 20, 2013 00:28
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.