• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dedução de fórmula física

Dedução de fórmula física

Mensagempor useredu » Sex Set 02, 2016 11:55

Bom dia,
Por favor não estou conseguindo deduzir está fórmula a partir da imagem do triângulo, se alguém conseguir e puder postar agradeço, será de grande ajuda :y:

Imagem
useredu
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Set 02, 2016 11:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Producão
Andamento: cursando

Re: Dedução de fórmula física

Mensagempor adauto martins » Qua Set 07, 2016 17:03

tomamos a soma vetorial das forças T,F,P:
T+F+P=0,pois os vetores formam um triang. fechado...
tomando o plano cartesiano como referencial e decompondo T,em {T}_{x},{T}_{y},teremos:
{T}_{x}+{T}_{y}+F+P=0({Fsen\theta})^{2}+({Pcos\theta})^{2}-{F}^{2}-{P}^{2}={F}^{2}(sen\theta^{2} -1)+P^{2}(cos\theta^{2} -1)=0\Rightarrow -{F}^{2}(1-sen\theta^{2})-{P}^{2}(1-{cos\theta}^{2})=0\Rightarrow (Fcos\theta)/{r}^{2}=Psen\theta\Rightarrow (k{q}^{2}.cos\theta)/{r}^{2}=mgsen\theta...como
{r}^{2}=4{d}^{2}sen\theta,teremos:
(k.{q}^{2}cos\theta)/(4{d}^{2}mg)={sen\theta}^{3},tomando como pede o exercicio K=k/(4{d}^{2}mg),
teremos como se pede:
K.{q}^{2}cos\theta={sen\theta}^{3}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Dedução de fórmula física

Mensagempor useredu » Qui Set 08, 2016 13:47

adauto martins escreveu:tomamos a soma vetorial das forças T,F,P:
T+F+P=0,pois os vetores formam um triang. fechado...
tomando o plano cartesiano como referencial e decompondo T,em {T}_{x},{T}_{y},teremos:
{T}_{x}+{T}_{y}+F+P=0({Fsen\theta})^{2}+({Pcos\theta})^{2}-{F}^{2}-{P}^{2}={F}^{2}(sen\theta^{2} -1)+P^{2}(cos\theta^{2} -1)=0\Rightarrow -{F}^{2}(1-sen\theta^{2})-{P}^{2}(1-{cos\theta}^{2})=0\Rightarrow (Fcos\theta)/{r}^{2}=Psen\theta\Rightarrow (k{q}^{2}.cos\theta)/{r}^{2}=mgsen\theta...como
{r}^{2}=4{d}^{2}sen\theta,teremos:
(k.{q}^{2}cos\theta)/(4{d}^{2}mg)={sen\theta}^{3},tomando como pede o exercicio K=k/(4{d}^{2}mg),
teremos como se pede:
K.{q}^{2}cos\theta={sen\theta}^{3}...


Muito obrigado mesmo! Foi de grande ajuda!
useredu
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Set 02, 2016 11:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Producão
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?