por leandrocf » Sex Jul 15, 2016 12:56
Olá, estou tendo dificuldade para a realização do seguinte exercício:
"Considere três lotes de 20 peças cada. O número de peças dentro do padrão no primeiro, segundo e terceiro lote são, respectivamente, 20, 15 e 10. De um lote escolhido ao acaso, retira-se uma peça aleatoriamente e verifica-se que está dentro do padrão. Devolve-se a peça ao lote e efetua-se uma nova retirada do mesmo lote e verifica-se que a segunda peça também está dentro do padrão.
a) Qual a probabilidade das duas peças retiradas estarem dentro do padrão?
b)Qual a probabilidade das peças terem sido retiradas do terceiro lote? "
Tenho aqui a solução que foi apresentada, contudo não entendi o que foi realizado:
a)
P(P1) = 1; P(P2) = 3/4; P(P3) = 1/2

P = 29/48
Não entendi qual lógica que ele está usando com esses termos ao quadrado, qual fórmula!
Consequentemente não entendi a b)
b)
P(P|3° lote) = 1/4
P(P|2° lote) = 9/16
P(P|1° lote) = 1

Agradeceria se alguém pudesse me ajudar a entender

-
leandrocf
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Jul 15, 2016 12:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
Voltar para Probabilidade
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (Combinatória) Peças do dominó
por Thiago1986Iz » Dom Jul 17, 2016 11:32
- 0 Respostas
- 4681 Exibições
- Última mensagem por Thiago1986Iz

Dom Jul 17, 2016 11:32
Probabilidade
-
- [Desvio Padrão] Porcentagem do desvio padrão
por GBT » Qui Mar 22, 2012 22:53
- 2 Respostas
- 14327 Exibições
- Última mensagem por fernando7

Dom Mai 13, 2018 21:55
Estatística
-
- Probabilidade dentro de uma matriz
por joaos92 » Ter Dez 14, 2010 15:29
- 3 Respostas
- 3229 Exibições
- Última mensagem por gichan

Qui Dez 16, 2010 12:21
Estatística
-
- Meter dentro da raiz
por seixas » Seg Ago 22, 2011 13:58
- 2 Respostas
- 2021 Exibições
- Última mensagem por seixas

Seg Ago 22, 2011 17:15
Polinômios
-
- Área dentro de um octógono
por anfran1 » Dom Ago 19, 2012 12:06
- 3 Respostas
- 2409 Exibições
- Última mensagem por anfran1

Dom Nov 17, 2013 10:34
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.