• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites exercícios

Limites exercícios

Mensagempor hugohggomes » Ter Jun 14, 2016 17:34

Olá Pessoal!

Vocês poderiam me ajudar a calcular os seguintes limites, usando os conceitos de limites e de racionalização, sem o uso de derivadas?

1) \lim_{x\rightarrow2}\frac{\sqrt[3]{{x}^{2}}-2\sqrt[3]{{x}}+1}{{(x-1)}^{2}}

2) \lim_{x\rightarrow4}\frac{3-\sqrt[]{5+x}}{1-\sqrt[]{5-x}}

3)\lim_{x\rightarrow a}\frac{{x}^{k}-{a}^{k}}{x-a}

Agradeço desde já! :)
hugohggomes
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jun 09, 2016 20:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.