• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites exponenciais

Limites exponenciais

Mensagempor lunayanne » Dom Mar 07, 2010 00:15

Olá! Eu tenho um pouco de dificuldade com limites e gostaria de ajuda para resolver alguns:

\lim_{x\rightarrow2}\frac{{x}^{x}-4}{x-2}

\lim_{x\rightarrow1}({x}^{n}+{x}^{n-1}+...+-1)

\lim_{x\rightarrow1}\frac{1-\sqrt[3]{x}}{1-\sqrt[2]{x}}

Conto com a ajuda de vocÊs. Obrigada. :)
lunayanne
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Mar 06, 2010 23:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia elétrica
Andamento: cursando

Re: Limites exponenciais

Mensagempor ogoiD » Sáb Mar 27, 2010 23:07

Na primeira e terceira , é só voce fatorar e cancelar o divisor , depois substitui o valor
ogoiD
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Mar 22, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecanica
Andamento: cursando

Re: Limites exponenciais

Mensagempor lucas92 » Ter Abr 13, 2010 03:57

= \lim_{x\rightarrow1} \left(x+x^2+...+x^{n-1}+x^n \right) =
lunayanne escreveu:Olá! Eu tenho um pouco de dificuldade com limites e gostaria de ajuda para resolver alguns:

\lim_{x\rightarrow2}\frac{{x}^{x}-4}{x-2}

\lim_{x\rightarrow1}({x}^{n}+{x}^{n-1}+...+-1)

\lim_{x\rightarrow1}\frac{1-\sqrt[3]{x}}{1-\sqrt[2]{x}}

Conto com a ajuda de vocÊs. Obrigada. :)


A primeira, nem faço ideia de como se resolve.

A segunda, na verdade, é o limite da soma de n funções potências, observe:


\lim_{x\rightarrow1} \left(x^n+x^{n-1}+...+x^{n-\left(n-2 \right)}+x^{n-(n-1)}+x^{n-n}-1 \right) =

= \lim_{x\rightarrow1} \left(x^n+x^{n-1}+...+x^2+x+1-1 \right) =

= \lim_{x\rightarrow1} \left(x^n+x^{n-1}+...+x^2+x \right) =

= 1+1^2+...+1^{n-1}+1^n =

= 1+1+...+1+1

= n.1

= n.

Na terceira, aplicando o limite, dá "0/0". Então, devemos primeiro, transformar os radicais para que eles tenham o mesmo índice:

\lim_{x\rightarrow1} \frac{1-\sqrt[3]{x}}{1-\sqrt[2]{x}} = \lim_{x\rightarrow1} \frac{1-\sqrt[6]{x^2}}{1-\sqrt[6]{x^3}}

Vamos fazer uma mudança de variável. Fazendo \sqrt[6]{x} = k, temos que \sqrt[6]{x^2} = k^2 e \sqrt[6]{x^3} = k^3. E se x\rightarrow1, então k\rightarrow\sqrt[3]{1} = 1. Aí ficamos com:

\lim_{x\rightarrow1} \frac{1-\sqrt[6]{x^2}}{1-\sqrt[6]{x^3}} = \lim_{k\rightarrow1} \frac{1-k^2}{1-k^3}

Aplicando novamente o limite, continua ainda a indeterminação "0/0". Mas agora nós temos um limite do quociente entre duas funções polinomiais. E se k=1 zera o polinômio do numerador e do denominador, então esses polinômios são divisíveis por \left(k-1 \right). Logo, temos:

\lim_{k\rightarrow1} \frac{1-k^2}{1-k^3} = \lim_{k\rightarrow1} \frac{\left(k-1 \right)\left(-k-1 \right)}{\left(k-1 \right)\left(k^2+k+1 \right)} = \lim_{k\rightarrow1} \frac{-k-1}{k^2+k+1} = \frac{-1-1}{1^2+1+1} = \frac{-2}{3}.
lucas92
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Abr 09, 2010 06:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?