por futuromilitar » Qui Mai 19, 2016 18:36
A equação da reta , que passa pelo centro da circunferência

e é paralela à reta

, é:
a)

b)

c)

d)

Fiz assim: Encontrei o centro C(4,8), em seguida encontrei o coef. angular m=4 e depois joguei na equação da reta RESULTANDO em

.
Confirma??
"Nenhum soldado pode combater a não ser que esteja bem abastecido de carne e cerveja''
-

futuromilitar
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qui Mai 19, 2016 17:50
- Localização: Itapajé,Ceará,Brasil
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Contabilidade
- Andamento: formado
por DanielFerreira » Sáb Mai 21, 2016 12:27
Completemos os quadrados:

Portanto, o centro da circunferência é no ponto

!
Obs.: as contas ficam mais simples se dividirmos a equação inicial por 2. Tente!
Até!
Editado pela última vez por
DanielFerreira em Sáb Mai 21, 2016 16:13, em um total de 2 vezes.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por futuromilitar » Sáb Mai 21, 2016 14:06
Obrigado pela obs. amigo! Bom, dividindo por 2 fica bem mais simples mesmo e o centro é diferente resultando em

e inclinação igual a

. Isso resulta em

.
"Nenhum soldado pode combater a não ser que esteja bem abastecido de carne e cerveja''
-

futuromilitar
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qui Mai 19, 2016 17:50
- Localização: Itapajé,Ceará,Brasil
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Contabilidade
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Geometria Analítica
por maysa » Ter Abr 14, 2009 10:35
- 1 Respostas
- 7579 Exibições
- Última mensagem por Marcampucio

Ter Abr 14, 2009 15:52
Geometria Analítica
-
- GEOMETRIA ANALITICA
por GABRIELA » Ter Set 29, 2009 17:20
- 3 Respostas
- 5255 Exibições
- Última mensagem por GABRIELA

Qua Set 30, 2009 16:49
Geometria Analítica
-
- Geometria analítica
por shirata » Qua Nov 11, 2009 20:37
- 2 Respostas
- 4031 Exibições
- Última mensagem por shirata

Dom Nov 15, 2009 09:25
Geometria Espacial
-
- geometria analitica
por Jaison Werner » Sex Abr 23, 2010 21:19
- 3 Respostas
- 3814 Exibições
- Última mensagem por MarceloFantini

Dom Jun 13, 2010 19:03
Geometria Analítica
-
- geometria analitica
por Jaison Werner » Qui Abr 29, 2010 20:44
- 1 Respostas
- 2686 Exibições
- Última mensagem por MarceloFantini

Qui Abr 29, 2010 21:10
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.