por Huovi » Dom Abr 24, 2016 01:10
A questã é a seguinte: "Encontre a área do triângulo formado pelo eixo dos X e as retas tangente e normal à curva y = 6x – x2 no ponto ( 5 , 5)."
Bem, cheguei na reta tangente y= 20x -95 e na reta normal y=(x+95)/20. Massss, como que eu faço pra calcular a área do triângulo que ele pede? Já tentei até desenhar o gráfico pra ver se clareava um pouco as coisas, mas não tá dando.
Agradeço desde já quem puder ajudar

-
Huovi
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Abr 09, 2016 00:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por DanielFerreira » Dom Abr 24, 2016 15:09
Olá
Huovi! De acordo com minhas contas, a reta que encontrou não é a tangente. Veja como fiz:
Queremos encontrar a recta tangente da curva

no ponto

. Fazemos isso pela definição de limites ou pelo conceito de derivada. Farei por derivada, pois é menos trabalhoso!
Para encontrarmos a equação de uma recta tangente a uma curva dada, num determinado ponto, derivamos a equação da curva e substituímos a abscissa na derivada encontrada.

Como podes notar, temos a inclinação e um ponto, já somos capazes de descrever a equação da recta tangente.
Com isso, temos que

e

são as equações das rectas tangente e normal, respectivamente.
A meu ver, podes encontrar a área usando Geometria Plana e/ou Analítica. Use (base x altura)/2.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Huovi » Qua Abr 27, 2016 19:28
Ahhh, certo, mas o que eu considero a base e a altura? Na ficha diz que a resposta é 425/8
-
Huovi
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Abr 09, 2016 00:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivadas]Eq da reta tangente e normal
por may » Ter Mai 14, 2013 04:41
- 1 Respostas
- 1959 Exibições
- Última mensagem por adauto martins

Qua Out 15, 2014 21:02
Cálculo: Limites, Derivadas e Integrais
-
- [coeficientes angulares da tangente e normal]
por lucasdemirand » Ter Ago 27, 2013 23:38
- 0 Respostas
- 1357 Exibições
- Última mensagem por lucasdemirand

Ter Ago 27, 2013 23:38
Cálculo: Limites, Derivadas e Integrais
-
- [coeficientes angulares da tangente e normal]
por lucasdemirand » Ter Ago 27, 2013 23:40
- 0 Respostas
- 1349 Exibições
- Última mensagem por lucasdemirand

Ter Ago 27, 2013 23:40
Cálculo: Limites, Derivadas e Integrais
-
- [coeficientes angulares da tangente e normal]
por lucasdemirand » Ter Ago 27, 2013 23:44
- 0 Respostas
- 1317 Exibições
- Última mensagem por lucasdemirand

Ter Ago 27, 2013 23:44
Cálculo: Limites, Derivadas e Integrais
-
- Calcular reta tangente e normal à curva
por Kingflare » Dom Dez 07, 2014 23:54
- 1 Respostas
- 2569 Exibições
- Última mensagem por Molina

Qua Dez 17, 2014 14:15
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.