[Domínio máximo da funçao logarítmica]
O exercício está em inglês mas traduzindo literalmente é o seguinte : a funçao f(x) =log base 2 (log base 3(log base 2(log base 3(log x base 2)))) tem o intervalo x> ? como seu domínio máximo em números reais . Eu sei que x> o e que quando y=0 , x=1 mas eu nao consigo entender o que seria esse domínio máximo nem esse intervalo, nem como prosseguir ou começar a resolver essa questão. PS: quando eu digo log base , sem numero entre log e base significa q está sem numero msm como se multiplicasse pelo parenteses.


o x pode assumir qualquer valor que a função sempre terá um valor real, o intervalo é aberto do menos infinito até o mais infinito.![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)