• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio máximo da funçao logarítmica

Domínio máximo da funçao logarítmica

Mensagempor wolney » Dom Mar 27, 2016 14:08

[Domínio máximo da funçao logarítmica]

O exercício está em inglês mas traduzindo literalmente é o seguinte : a funçao f(x) =log base 2 (log base 3(log base 2(log base 3(log x base 2)))) tem o intervalo x> ? como seu domínio máximo em números reais . Eu sei que x> o e que quando y=0 , x=1 mas eu nao consigo entender o que seria esse domínio máximo nem esse intervalo, nem como prosseguir ou começar a resolver essa questão. PS: quando eu digo log base , sem numero entre log e base significa q está sem numero msm como se multiplicasse pelo parenteses.
wolney
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 27, 2016 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Domínio máximo da funçao logarítmica

Mensagempor 0 kelvin » Seg Mar 28, 2016 22:42

Eu acho que a tradução não é "domínio máximo" porque eu nunca vi esse termo antes. Uma função logarítmica, qualquer que seja a base, tem um domínio onde vc sabe que não existe número que elevado a outro dê zero. Existe o limite da função quando x tende a zero e quando x tende a infinito. Logaritmo, por definição, não tem valores negativos.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Domínio máximo da funçao logarítmica

Mensagempor wolney » Ter Mar 29, 2016 09:15

0 kelvin escreveu:Eu acho que a tradução não é "domínio máximo" porque eu nunca vi esse termo antes. Uma função logarítmica, qualquer que seja a base, tem um domínio onde vc sabe que não existe número que elevado a outro dê zero. Existe o limite da função quando x tende a zero e quando x tende a infinito. Logaritmo, por definição, não tem valores negativos.


Obg,então é possivel nesse caso calcular esse limite? Se sim como seria?
wolney
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 27, 2016 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Domínio máximo da funçao logarítmica

Mensagempor 0 kelvin » Qua Mar 30, 2016 21:51

Limite de função é cálculo. Num livro de cálculo tem a prova do limite de log(x).

Domínio máximo soa como intervalo, o intervalo de valores para os quais o log(x) esta definido. No caso do log(x), a função aceita valores próximos de zero mas não iguais a zero (é aberto nesse ponto), até infinito (infinito não é um número, é aberto o intervalo para os valores positivos).

Intervalo de função é exatamente isso, um valor máximo e um mínimo para os quais a função tem algum valor real. Então, por exemplo, f(x) = x^2 o x pode assumir qualquer valor que a função sempre terá um valor real, o intervalo é aberto do menos infinito até o mais infinito.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.