• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trajetórias ortogonais a familia a 1 parametro

Trajetórias ortogonais a familia a 1 parametro

Mensagempor jearaujo01 » Qui Mar 03, 2016 16:27

Olá, podem me ajudar?

Calcule as trajetórias ortogonais à família a um parâmetro
x^3 - 3xy^2 + x + 1 = c
jearaujo01
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mar 03, 2016 16:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Trajetórias ortogonais a familia a 1 parametro

Mensagempor adauto martins » Seg Mar 07, 2016 21:29

f(x,y)={x}^{3}-3x{y}^{2}+x+1-c\Rightarrow f'(x,y)=3.{x}^{2}-3.({y}^{2}+2.x.yy' )+1=0\Rightarrow 3{x}^{2}-3{y}^{2}-6xyy'+1=0\Rightarrow y'=3{y}^{2}-3{x}^{2}-1/(6xy)...como y'=-1/{y'}_{0}\Rightarrow -1/{y'}_{0}=(3{y}^{2}-3{x}^{2}-1)/6xy...{y'}_{0}=6xy/(3{x}^{2}-3{y}^{2}+1)\Rightarrow 3{x}^{2}dy-3{y}^{2}dy+dy=6xydx
...integrando ambos os membros 3{x}^{2}y-{y}^{3}+y+c=3{x}^{2}y+k \Rightarrowy-{y}^{3}=C
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Trajetórias ortogonais a familia a 1 parametro

Mensagempor adauto martins » Ter Mar 08, 2016 08:59

uma correçao...
a equaçao (3{x}^{2}-3{y}^{2}+1)dy-6xydx=0recai em uma EDO EXATA,pois...M(x,y)dy+N(x,y)dx=0 tem se
(\partial/\partial x)M(x,y)=(\partial/\partial y)N(x,y)=-6xy......logo se resolvera utilizando o metodo de EDO EXATA... maos a massa,resolva-a...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Trajetórias ortogonais a familia a 1 parametro

Mensagempor jearaujo01 » Ter Mar 08, 2016 19:26

Então, é exatamente ai que não estou conseguindo. Poderia resolver me explicando?
jearaujo01
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mar 03, 2016 16:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Trajetórias ortogonais a familia a 1 parametro

Mensagempor adauto martins » Qua Mar 09, 2016 16:58

entao vamos á soluçao...
chegamos na EDO EXATA:
(3{x}^{2}-3{y}^{2}+1)dy-6xydx=0,ou M(x,y)dy+N(x,y)dx=0......
onde constatamos q.(\partial/ \partial x)M=(\partial/ \partial y)N=6y(q.é uma correçao da anterior)...
queremos entrar a funçao {f}_{o}(x,y)=c q. é ortoganal a funçao dada f(x,y)=c...
essa funçao sera {f}_{o}(x,y)=\int_{}^{}M dy ou {f}_{o}(x,y)=\int_{}^{}N dx,pois ({\partial}^{2}/{\partial}^{2}x)M=({\partial}^{2}/{\partial}^{2}y)N...vamos tomar f(x,y)=\int_{}^{}N(x,y)dx=\int_{}^{}Ndx+h(y),h(y) pq é uma derivaçao parcial e a variavel y é contadada como se fosse uma constante nessa derivaçao...logo teremos:
f(x,y)=\int_{}^{}(-6xy)dx+h(y)=-6y\int_{}^{}xdx+h(y)=-3y{x}^{2}+h(y)......
como M(x,y)=(\partial/\partial y)f(x,y)=3x^{2}-3y^{2}+1teremos:
-6{x}^{2}+h'(y)=3{x}^{2}-3{y}^{2}+1\Rightarrow h'(y)=3{x}^{2}+3{y}^{2}-1\Rightarrow h(y)=3{x}^{2}y+{y}^{3}-y+K...logo:
{f}_{0}(x,y)=-3y{x}^{2}+3y{x}^{2}+{y}^{3}-y+K={y}^{3}-y+K
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}