por CarolinaR » Seg Mar 07, 2016 11:00
As raízes da equação x³-9x²+23x - 15 = 0 , colocadas em ordem crescente , são os termos iniciais de uma progressão aritmétcia cuja soma dos 10 primeiros termos é :
a)80
b)90
c)100
d)110
e)120
Tentei fazer descobrindo as raízes , para depois usar a fórmula da P.A para descobrir a soma dos 10 primeiros termos mas não deu certo , pois quando fui tirar as raízes por baskara , o delta deu negativo .
o jeito que eu tava tentando fazer :
x (x² - 9x + 23 ) - 15 = 0
x=15 ou delta = (-9)² - 4.1.23 = ?-11
Foi a única forma que pensei para resolvê - lo )=
-
CarolinaR
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sex Mar 04, 2016 19:39
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Dom Abr 10, 2016 23:54
CarolinaR escreveu:As raízes da equação x³-9x²+23x - 15 = 0 , colocadas em ordem crescente , são os termos iniciais de uma progressão aritmética cuja soma dos 10 primeiros termos é :
a)80
b)90
c)100
d)110
e)120
Olá
Carolina, boa noite!
Considere a seguinte equação:

; uma possível raiz é dada pelos divisores (positivos e negativos) de

.
Nesse exercício, temos

,

,

e

. Ao verificar se

é uma das raízes, o resultado é verdadeiro.
Aplicando o
Dispositivo de Briot Rufini irá concluir que:

.
Por conseguinte, ao fatorar o segundo fator, tiramos que

.
Já que as raízes foram obtidas, agora podemos obter a soma da P.A.
Tente concluir! Deverá encontrar 100.
Até.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (UNIFOR) Progressão Aritmética e Progressão Harmônica
por andersontricordiano » Ter Mar 22, 2011 12:56
- 1 Respostas
- 5924 Exibições
- Última mensagem por LuizAquino

Ter Mar 22, 2011 13:52
Progressões
-
- Progressão aritmética e progressão geométrica
por Danilo Dias Vilela » Sex Mar 12, 2010 13:41
- 1 Respostas
- 4497 Exibições
- Última mensagem por thadeu

Sex Mar 12, 2010 17:36
Progressões
-
- [Aritmética] Progressão Aritmética.
por Pessoa Estranha » Qua Ago 28, 2013 22:11
- 2 Respostas
- 5371 Exibições
- Última mensagem por Pessoa Estranha

Qui Ago 29, 2013 16:06
Aritmética
-
- Progressão Aritmética
por Rejane Sampaio » Qua Set 17, 2008 16:20
- 1 Respostas
- 4235 Exibições
- Última mensagem por juliomarcos

Qui Set 18, 2008 13:07
Álgebra Elementar
-
- Progressão Aritmética (PA)
por Cleyson007 » Ter Jan 27, 2009 21:40
- 2 Respostas
- 8174 Exibições
- Última mensagem por Cleyson007

Sáb Mai 30, 2009 12:31
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.