• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas - Questão envolvendo prova e angulo

Derivadas - Questão envolvendo prova e angulo

Mensagempor RuuKaasu » Sáb Dez 26, 2015 23:57

Considere a circunferência x² + y² = 4. Se um ponto P desta circunferência, no 1° quadrante, é tal que o segmento OP faz um ângulo de 75° com o eixo dos x, prove que a tangente ao círculo nesse ponto faz
um ângulo de 25° com aquele eixo.
[Sugestão: Use diferenciação implícita]

Bom algum ângulo provavelmente está errado sendo 65-25 ou 75-15 o correto, mas não importa, eu quero saber o meio de responder isso, eu descobri usando a derivação o coeficiente angular em função de x da reta mas a partir dai eu não sei mais o que fazer:
x² + y² = 4
f(x) = \sqrt{-x^2+4}
f'(x) = frac{-x}{\sqrt{-x^2+4}}

x² + y² = 4
f(x) = raiz(-x²+4)
f'(x) = -x/raiz(-x²+4)
RuuKaasu
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Dez 26, 2015 23:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias da Computação
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.