por leticiapires52 » Qua Nov 25, 2015 16:01
Encontre as dimensões de um cilindro circular reto de maior volume que pode ser inscrito em um cone circular reto com raio de 5 cm e altura de 12 cm.
-
leticiapires52
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Qua Fev 12, 2014 10:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por adauto martins » Qui Nov 26, 2015 11:18
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dimensões de um cilindro
por fcosta » Ter Nov 29, 2016 12:20
- 0 Respostas
- 3148 Exibições
- Última mensagem por fcosta

Ter Nov 29, 2016 12:20
Trigonometria
-
- [Volume de um cilindro circular reto]
por liahxs » Dom Ago 13, 2017 23:34
- 0 Respostas
- 4824 Exibições
- Última mensagem por liahxs

Dom Ago 13, 2017 23:34
Geometria Espacial
-
- Cilindro Circular Reto Inscrito em Cone
por OtavioBonassi » Ter Jul 12, 2011 18:29
- 1 Respostas
- 4169 Exibições
- Última mensagem por Adriano Tavares

Dom Jan 01, 2012 17:51
Geometria Espacial
-
- ME AJUDE POR FAVOR:Cilindro circular reto inscrito no cone
por netochaves » Sex Abr 05, 2013 14:32
- 0 Respostas
- 1756 Exibições
- Última mensagem por netochaves

Sex Abr 05, 2013 14:32
Cálculo: Limites, Derivadas e Integrais
-
- Cilindro circular reto inscrito num cone reto
por netochaves » Qui Abr 04, 2013 18:04
- 10 Respostas
- 7036 Exibições
- Última mensagem por netochaves

Qua Mai 01, 2013 16:31
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.