• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções quadraticas pf me ajudem

Funções quadraticas pf me ajudem

Mensagempor Thalia Cristina » Qui Nov 05, 2015 19:39

3)) No mês. de dezembro , a loja A oferece aos funcionários. temporários. salário fixo de R$ 750,00. mais uma comissão de 2% sobre o valor total vendido já a loja B não oferece salário fixo mas pia 5% de comissão sobre o valor total vendido.
a)) Escreva as leis de formação das funções envolvidas correspondentes ao salário recebido em cada uma das lojas pelo total. de vendas.
b)) A partir de que valor mensal de vindas e mais vantajoso trabalhar na loja B?
Thalia Cristina
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Nov 05, 2015 19:32
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Matemática
Andamento: cursando

Re: Funções quadraticas pf me ajudem

Mensagempor nakagumahissao » Sex Nov 06, 2015 10:38

Vocë não nos disse o que já tentou fazer para resolver o problema. Favor ver as regras deste site. No entanto, vou responder esta sua pergunta, mas na próxima vez, para não ficar sem resposta, por favor, diga-nos tudo o que já tentou fazer para resolver seu problema e quais foram as reais dúvidas que apareceram para que nós não sejamos meros resolvedores de problema. Grato!

viewtopic.php?f=0&t=7543

RESOLUÇÃO:

Em todos os casos, vamos chamar de S o valor do salário, S(x) a função que queremos e x, o valor da comissão. Desta maneira:

a) Escreva as leis de formação das funções envolvidas correspondentes ao salário recebido em cada uma das lojas pelo total de vendas.

Para a Loja A:

{S}_{A}(x) = 750,00 + 0,02x \;\;\;\;\;\;[1]

Para a Loja B:

{S}_{B}(x) = 0,05x \;\;\;\;\;\;\;\;[2]


b) A partir de que valor mensal de vendas é mais vantajoso trabalhar na loja B?

Para sabermos disso, precisamos primeiramente saber em que ponto as vendas se igualam, ou seja, quando:

{S}_{A}(x) = {S}_{B}(x)

Assim:

750,00 + 0,02x = 0,05x \Rightarrow 0,05 - 0,02x = 750 \Rightarrow

\Rightarrow 0,03x = 750 \Rightarrow \frac{3}{100}x = 750 \Rightarrow

\Rightarrow 3x = 750 \ times 100 \Rightarrow x = \frac{75000}{3} \Rightarrow x = 25000

Assim, os dois salários serão iguais quando as vendas atingirem R$ 25.000,00! - Aumentando-se 1 real em x, poderemos então saber quem tem mais vantagem, ou seja, se é o Salário da Empresa A ou o Salário da Empresa B. Assim, vamos substituir o valor de x nas equações [1] e [2] por 25001 reais para sabermos qual é o mais vantajoso:

{S}_{A}(x) = 750,00 + 0,02x \Rightarrow {S}_{A}(x) = 750,00 + 0,02 \times 25001

{S}_{A}(x) = 1250,02

e por fim:

{S}_{B}(x) = 0,05x \Rightarrow {S}_{B}(x) = 0,05 \times 25001

{S}_{B}(x) = 1250,05

Portanto, o salário na Empresa B só será mais vantajoso que o Salário na Empresa A quando as vendas ultrapassarem R$ 25.000,00!


\blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}