por Matheusgdp » Qua Set 16, 2015 04:07
Olá, caros amigos! Acabei de me registrar no fórum, já conhecia o mesmo, e já fui bastante ajudado, porém estou com um problema que não consegui resolver, não achei nada similar por aqui ou por outros veículos, infelizmente não sou aprimorado em escrever as fórmulas com LaTeX via BBCode, mas gostaria de perguntar mesmo assim. Preciso de ajuda para solucionar a DERIVADA (POR DEFINIÇÃO) DA RAIZ QUADRADA DO MÓDULO DE X. Obrigado, caros!
-
Matheusgdp
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Set 16, 2015 03:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em engenharia civil
- Andamento: cursando
por adauto martins » Qua Set 16, 2015 12:51
1)
f'(x)=lim(h...>0+)((x+h)^1/2-x^1/2)/h...p/x positivo ou zero...aqui lim(x...>0+) eh o limite p/x indo a valores maiores q.zero...
2)
f'(x)=lim(h...>0-)((h-x)^1/2-(-x)^1/2/h...p/x negativo...
1)
f'(x)=lim(h...>0+)((x+h)^1/2-x^1/2)(x+h)^1/2+x^1/2)/(h.(x+h)^1/2+x^1/2)=lim(h...>0+)(x+h-x)/h.(x+h)^1/2+x)=lim(x...>0+)1/(x+h)^1/2+x^1/2)=1/(2x^1/2)...bom,sem o editor de formulas ta dificil,espero q. vc entenda ai,meu caro...a parte 2) eh similar a parte 1,e dara mesmo resultado...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Matheusgdp » Qui Set 17, 2015 18:31
Obrigado,caro Adauto! Realmente é embaraçoso entender sem o editor de fórmulas, mas agradeço pela atenção! Abraço!
-
Matheusgdp
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Set 16, 2015 03:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em engenharia civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [derivada] derivada pela definição da secante
por TheKyabu » Sáb Out 27, 2012 23:24
- 2 Respostas
- 10632 Exibições
- Última mensagem por TheKyabu

Dom Out 28, 2012 11:44
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] Duvida em derivada da definição.
por paulohenrique_ » Dom Dez 09, 2012 16:05
- 1 Respostas
- 1816 Exibições
- Última mensagem por young_jedi

Dom Dez 09, 2012 18:12
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Definição de derivada num ponto
por fff » Seg Fev 24, 2014 17:12
- 2 Respostas
- 2589 Exibições
- Última mensagem por e8group

Dom Jul 20, 2014 16:14
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada]derivada de função de raiz cúbica
por armando » Sáb Jul 20, 2013 15:22
- 4 Respostas
- 14347 Exibições
- Última mensagem por armando

Dom Jul 21, 2013 22:17
Cálculo: Limites, Derivadas e Integrais
-
- ]Derivada de uma função] derivada com raiz
por Leandro_Araujo » Ter Mar 06, 2012 01:11
- 5 Respostas
- 8196 Exibições
- Última mensagem por LuizAquino

Ter Mar 06, 2012 13:40
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.