• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[aplicação dos reais] círculo trigonométrico

[aplicação dos reais] círculo trigonométrico

Mensagempor Ederson_ederson » Qua Ago 26, 2015 11:55

Bom dia.

estou tentando resolver uma questão e não sei se está certo e também não sei finalizar.

"Resolvendo a equação 3(1 - cos x) = sen^2 x, encontramos para solução:

a) x = k \Pi
b) x = k2\Pi + \Pi
c) x = k2\Pi + \Pi/2
d) x = k2\Pi
e) n.d.a.

todas as alternativas tem k pertence aos inteiros"

Eu nem sei por onde começar.

Me disseram que eu posso substituir o cos x por k e desenvolver a conta, mas por que eu faria essa substituição? Isso existe?

Muito obrigado! :y:
Ederson_ederson
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Jun 23, 2015 19:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [aplicação dos reais] círculo trigonométrico

Mensagempor Cleyson007 » Qua Ago 26, 2015 18:47

Olá Ederson!

Da Relação Fundamental da Trigonometria sabemos que: sen² x + cos² x = 1

Fazendo cosx = k, temos que:

sen² x = 1 - k²

3 (1-k) = 1 - k²

k² - 3k + 3 - 1=0

k² - 3k + 2 = 0

Resolvendo a equação acima chegamos em k = 1

Como cosx = k --> cosx=1 ; x=0º

Logo,

x = 2kpi, k E z

Caso queira conhecer melhor o nosso trabalho segue o contato: viewtopic.php?f=151&t=13614

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [aplicação dos reais] círculo trigonométrico

Mensagempor Ederson_ederson » Qui Ago 27, 2015 07:50

Cleyson007 escreveu:Olá Ederson!

Da Relação Fundamental da Trigonometria sabemos que: sen² x + cos² x = 1

Fazendo cosx = k, temos que:

sen² x = 1 - k²

3 (1-k) = 1 - k²

k² - 3k + 3 - 1=0

k² - 3k + 2 = 0

Resolvendo a equação acima chegamos em k = 1




Olá, bom dia!!!

Muito obrigado pela ajuda! :-D

Como cosx = k --> cosx=1 ; x=0º

Logo,

x = 2kpi, k E z

Caso queira conhecer melhor o nosso trabalho segue o contato: viewtopic.php?f=151&t=13614

Abraço
Ederson_ederson
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Jun 23, 2015 19:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.