• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integrais mediatas

integrais mediatas

Mensagempor leticiapires52 » Qua Ago 12, 2015 16:37

1- Com o auxílio da tebela de integrais imedistas, determine a integral, a seguir:
questao 1.png
questao 1.png (1.05 KiB) Exibido 1980 vezes


2- Utilizando a tabela de integração imediata, o cálculo para a expressão
questao 2.png
questao 2.png (16.03 KiB) Exibido 1980 vezes
, resulta exatamente:


OBS: Se alguém souber algum site que posso achar a tabela de integrais imediatas.
leticiapires52
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qua Fev 12, 2014 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: integrais mediatas

Mensagempor nakagumahissao » Qui Ago 13, 2015 11:43

\int (x^2 + x)dx

Usaremos:

\int x^n dx = \frac{x^{(n+1)}}{n+1} + C

Assim:

\int (x^2 + x)dx = \int x^2 dx + \int x dx = \frac{x^3}{3} + \frac{x^2}{2} + C


Sua outra pergunta:

\int \left(2e^x - \frac{\sin x}{\cos^2 x}  + \frac{2}{x^7} \right) dx

Vamos primeiramente reorganizar esta integral usando suas propriedades:

\int \left(2e^x - \frac{\sin x}{\cos^2 x}  + \frac{2}{x^7} \right) dx = 2\int e^x dx -\int \frac{\sin x}{\cos^2 x} dx + \int  2x^{-7} dx =

= 2\int e^x dx -\int \frac{\sin x}{\cos x \cos x} dx + \int  2x^{-7} dx =

= 2\int e^x dx -\int \left(\frac{\sin x}{\cos x}\frac{1}{\cos x} \right) dx + \int  2x^{-7} dx =

= 2\int e^x dx -\int \left(\tan x \cdot \sec x \right) dx + \int  2x^{-7} dx =

= 2\int e^x dx -\int \left(\sec x \cdot \tan x \right) dx + 2\int  x^{-7} dx \;\;\; [1]

Vamos utilizar:

\int e^{u} du = e^u + C \;\;\; [2]

\int (\sec u \tan u) dx = \sec u + C \;\;\; [3]

e

\int x^n dx = \frac{x^{(n+1)}}{n+1} + C \;\;\; [4]

Usando [2] em [1] teremos:

2\int e^x dx = 2 \cdot(e^x) + {C}_{1} \;\;\;\;\; [5]

Usando [3] em [1] teremos:

\int \left(\sec x \cdot \tan x \right) dx = \sec x + {C}_{2}  \;\;\;\;\; [6]

e finalmente, usando [4] em [1] teremos:

2\int  x^{-7} dx = 2 \cdot \left(\frac{{x}^{-7 + 1}}{-7+1} \right) + {C}_{3} = 2 \cdot \left(\frac{{x}^{-6}}{-6} \right) + {C}_{3} = -\frac{1}{3{x}^{6}} + {C}_{3} \;\;\;\;\; [7]

Colocando-se os resultados obtidos em [5], [6] e [7] de volta em 1, teremos:

= 2\int e^x dx -\int \left(\sec x \cdot \tan x \right) dx + 2\int  x^{-7} dx = 2e^x - \sec x  -\frac{1}{3{x}^{6}} + C

Onde:

C = {C}_{1} + {C}_{2} + {C}_{3}


Resposta para sua última pergunta:

Você pode encontrar a tabela imediata de integrais em qualquer livro de Cálculo 1, mas se quiser, poderá baixar essa tabela diretamente do meu site no seguinte endereço:

http://matematicaparatodos.pe.hu/2015/0 ... imediatas/

\blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: integrais mediatas

Mensagempor leticiapires52 » Qui Ago 13, 2015 13:47

Muito obrigado
leticiapires52
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qua Fev 12, 2014 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?