por Rosi7 » Sex Ago 07, 2015 21:34
Gente não estou conseguindo fazer a multiplicação de forma correta, a questão é que mesmo fazendo de forma incorreta minha resposta está batendo com a do livro, pois sempre chego em um numero 1/infinito embaixo = 0, porém tem algo errado.. Eu sinto que tem algo, igual uma questão anterior que eu cortava tudo.. PS: Estou resolvendo o livro leithold por conta própria, não sei ao certo quantas vezes tentei fazer esta questão, mas foram vária e o máximo que chego é na resposta final zero. Embora eu não entendo o que faço na multiplicação, apenas estou usando (a^3-b^3) = a^2 + ab + b^2.
PS: Não posso usar derivada, estou em calculo I e só posso usa-lo na 3 unidade.. ou seja. Se alguém puder me ajudar, peço que seja no tradicional.
![\lim_{-\infty}\sqrt[3]{{x}^{3} + x} - \sqrt[3]{{x}^{3} + 1} \lim_{-\infty}\sqrt[3]{{x}^{3} + x} - \sqrt[3]{{x}^{3} + 1}](/latexrender/pictures/add83a736a8abbc584a6bea31b918fd8.png)
-
Rosi7
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Sáb Mai 02, 2015 18:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física
- Andamento: cursando
por nakagumahissao » Sáb Ago 08, 2015 12:54
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por Rosi7 » Seg Ago 10, 2015 13:22
Entendi onde é meu erro. Embaixo eu não repetia, fiz a regra do a² +ab + b² também.. Que confusão a minha!!!
Muitíssimo obrigada!!!!!!!!
Obs: Nakagumahissao, notei que você usou a²-b², posso usar isso? Sendo que tenho raiz cúbica o certo não seria a³-b³?
-
Rosi7
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Sáb Mai 02, 2015 18:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite raiz cúbica
por Carolminera » Qua Jul 16, 2014 18:25
- 0 Respostas
- 3460 Exibições
- Última mensagem por Carolminera

Qua Jul 16, 2014 18:25
Cálculo: Limites, Derivadas e Integrais
-
- Limite de função com raiz cúbica
por leandroassisc » Ter Mar 10, 2015 16:25
- 3 Respostas
- 2827 Exibições
- Última mensagem por leandroassisc

Ter Mar 10, 2015 20:59
Cálculo: Limites, Derivadas e Integrais
-
- Limite com raíz cubica sendo o denominador x
por danivelosor » Sáb Mar 28, 2015 21:49
- 1 Respostas
- 2361 Exibições
- Última mensagem por DanielFerreira

Sáb Abr 04, 2015 18:48
Cálculo: Limites, Derivadas e Integrais
-
- (Limite) tendendo a - infinito com raiz cúbica
por kAKO » Qui Mai 07, 2015 12:18
- 1 Respostas
- 4233 Exibições
- Última mensagem por adauto martins

Sáb Mai 09, 2015 15:46
Cálculo: Limites, Derivadas e Integrais
-
- [Raiz Cúbica e Raiz Quadrada] Muito difícil achar a solução.
por Leocondeuba » Sáb Mai 11, 2013 19:27
- 2 Respostas
- 7247 Exibições
- Última mensagem por Leocondeuba

Sáb Mai 11, 2013 20:42
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.