por raphaelo » Qua Jul 29, 2015 14:53
É a questão 589 do livro de EM do Gelson Iezzi, 10ª edição.
Prove que em todo triângulo ABC vale a igualdade:
a²+b²+c² = 2ab cosC + 2ac cosB + 2bc cosA
Desenvolvi desta maneira até empacar:
a²+(b²+c²-2bc cosA) = 2a (b cosC + c cosB)
2a² = 2a (b cosC + c cosB)
a = b cosC + c cos B (I)
Foi aí que empaquei. Acho que me falta alguma relação fundamental de de cossenos. Forçando a barra, tentei desenvolver desmembrando os cossenos mas caí numa igualdade falsa:
Considerando que: cos C = c/a ; cos B = b/a substituindo em (I) teríamos:
a = bc/a+ cb/a
a²= 2bc -> o que não é necessáriamente verdade!
Gostaria então que me ajudassem no desenvolvimento que eu fiz até onde empaquei e caminhos alternativos para conseguir a tal prova. Gostaria de saber também o motivo de na minha "forçação de barra" eu ter chegado a um absurdo.
Bom estudo a todos!
P.S.: Esta é a minha primeira dúvida que posto neste fórum, se tiver algo que eu tiverem dicas para melhorar a exposição do problema, por favor, não exitem em dizer!
-
raphaelo
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Jul 29, 2015 14:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: bach em ciências matemáticas e da Terra
- Andamento: cursando
por nakagumahissao » Qui Jul 30, 2015 13:50
Como precisei adicionar uma figura e é difícil colocar neste fórum, deixei resolvido em separado.
Veja a demonstração em:
http://matematicaparatodos.pe.hu/2015/0 ... -cossenos/
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por raphaelo » Qui Jul 30, 2015 15:41
Muito obrigado, nakagumahissao!!!
A solução foi bem simples e clara! Bastou fazer a soma simultânea de cada um dos lados (abc) pela Lei dos cossenos e por algebrismo simples chegou-se a prova! Bem bolado! O caminho que percorri foi embolado!rs
-
raphaelo
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Jul 29, 2015 14:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: bach em ciências matemáticas e da Terra
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Lei dos Cossenos
por Joseaugusto » Ter Mar 06, 2012 11:43
- 4 Respostas
- 2781 Exibições
- Última mensagem por Joseaugusto

Ter Mar 06, 2012 22:42
Trigonometria
-
- Lei dos cossenos
por kandara » Qua Abr 30, 2014 17:35
- 1 Respostas
- 4445 Exibições
- Última mensagem por Russman

Qua Abr 30, 2014 18:54
Trigonometria
-
- UFSCar - Lei dos cossenos
por brunocav » Seg Mai 30, 2011 18:16
- 2 Respostas
- 10386 Exibições
- Última mensagem por brunocav

Seg Mai 30, 2011 19:23
Trigonometria
-
- LEI DOS SENOS E COSSENOS
por MERLAYNE » Qua Abr 25, 2012 20:36
- 1 Respostas
- 1703 Exibições
- Última mensagem por Russman

Qua Abr 25, 2012 21:26
Trigonometria
-
- Multiplicação de cossenos
por anfran1 » Sex Jun 29, 2012 10:39
- 5 Respostas
- 4927 Exibições
- Última mensagem por Arkanus Darondra

Dom Jul 01, 2012 12:48
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.