• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES][ Indeterminação com Raiz no numerador]

[LIMITES][ Indeterminação com Raiz no numerador]

Mensagempor maurosilva7 » Qua Abr 22, 2015 19:42

Gostaria de saber como saio da indeterminação \frac{0}{0} nesse exercício: \lim_{x\rightarrow1}\frac{\sqrt[]{2-x^2}-1}{x-1}.
Eu tento multiplicar pelo termo conjugado do numerador, mas não consigo sair da indeterminação pois tanto o denominador quanto o numerador continuam zerando.
maurosilva7
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Abr 22, 2015 19:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Eletrônica
Andamento: cursando

Re: [LIMITES][ Indeterminação com Raiz no numerador]

Mensagempor DanielFerreira » Sáb Abr 25, 2015 22:26

Olá Mauro, seja bem-vindo!

Deveria ter racionalizado o numerador, veja:

\\ \lim_{x \to 1} \frac{\sqrt{2 - x^2} - 1}{x - 1} = \\\\\\ \lim_{x \to 1} \frac{\sqrt{2 - x^2} - 1}{x - 1} \times \frac{\sqrt{2 - x^2} + 1}{\sqrt{2 - x^2} + 1} = \\\\\\ \lim_{x \to 1} \frac{2 - x^2 - 1}{(x - 1)(\sqrt{2 - x^2} + 1)} = \\\\\\ \lim_{x \to 1} \frac{1 - x^2}{(x - 1)(\sqrt{2 - x^2} + 1)} = \\\\\\ \lim_{x \to 1} \frac{\cancel{(1 - x)}(1 + x)}{- \cancel{(1 - x)}(\sqrt{2 - x^2} + 1)} = \\\\\\ \lim_{x \to 1} \frac{(1 + x)}{-(\sqrt{2 - x^2} + 1)} = \\\\\\ \frac{1 + 1}{- (\sqrt{1} + 1)} = \\\\\\ \boxed{- 1}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [LIMITES][ Indeterminação com Raiz no numerador]

Mensagempor maurosilva7 » Dom Jul 26, 2015 20:54

Obrigado! Agora consegui entender.
maurosilva7
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Abr 22, 2015 19:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Eletrônica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}