• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Comprimento de um Retângulo

Comprimento de um Retângulo

Mensagempor deividchou » Sex Jul 24, 2015 16:23

Olá,alguém poderia me ajudar a mostrar em que estou errado,caso a interpratação do exercício esteja errada também.
Obrigado. Gab: C- 16m
20150724_144832.jpg
Exercicio


20150724_151133.jpg
Resolução
deividchou
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qua Ago 07, 2013 13:52
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Comprimento de um Retângulo

Mensagempor DanielFerreira » Sáb Jul 25, 2015 17:12

Caro Deivid, boa tarde!

O comprimento devia representar (x + \frac{25}{100} \cdot x), isto é, (x + \frac{x}{4}), e não (x + 25).
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Comprimento de um Retângulo

Mensagempor deividchou » Dom Jul 26, 2015 20:41

Obrigado pela prestatividade e ajuda ! :)
deividchou
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qua Ago 07, 2013 13:52
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}