• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Potenciação] raiz de número negativo,sendo tudo ao quadrado

[Potenciação] raiz de número negativo,sendo tudo ao quadrado

Mensagempor Debora Bruna » Sex Jun 26, 2015 23:02

Minha vida foi sempre movida na frase de Sócrates "Só sei que nada sei", quanto mais eu estudo mais percebo que não sei de nada. :-P
Seguinte, sempre resolvi questões horrendas, mas hoje inventei tirar à prova do que estou fazendo e me confundi toda.
Problemas como esse, resolvia assim: (?-3)^2 = (corta o expoente com a raiz) = -3.
Mas sei que um número elevado a n é esse número multiplicado n vezes: (?-3)^2 = (?-3).(?-3)= (?-3.-3) = ?9 = 3. Viram? Deu 3 positivo. Assim eu lhes pergunto, onde foi que eu errei?
Debora Bruna
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Dez 15, 2014 17:49
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Potenciação] raiz de número negativo,sendo tudo ao quad

Mensagempor DanielFerreira » Sáb Jun 27, 2015 14:30

Olá Débora, boa tarde!

Sua dúvida está relacionada ao estudo do módulo.

Supomos que queiramos encontrar a raiz quadrada de k^2, isto é \sqrt{k^2}. Veja o que acontece...

Resolução:

\\ \sqrt{k^2} = |k| \\\\ |k| = \begin{cases}k \;\; \text{se} \;\; k \geq 0 \\ - k \;\; \text{se} \;\; k < 0 \end{cases}


Outro exemplo:

\\ (\sqrt{- 4})^2= \\\\ \sqrt{(- 4)^2} = \\\\ \sqrt{16} = \\\\ |4| =

Uma vez que 4 \geq 0, temos que \boxed{|4| = + 4}

Vale ressaltar que não existe raiz quadrada de números negativos, em \mathbb{R}, por isso não podemos cortar a raiz com o expoente!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Potenciação] raiz de número negativo,sendo tudo ao quad

Mensagempor Debora Bruna » Dom Jun 28, 2015 15:10

Muitíssimo obrigada danjr5 :y: , esse negócio de corta corta de alguns professores nunca dá certo não é msm?, mas enfim, nunca mais errarei!
Debora Bruna
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Dez 15, 2014 17:49
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Potenciação] raiz de número negativo,sendo tudo ao quad

Mensagempor DanielFerreira » Dom Jun 28, 2015 16:01

Não há de quê e volte sempre!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}