por iaraalmeida » Qui Jun 25, 2015 01:14
Encontre o volume do solido que resulta quando a regiao limitada pelas curvas y=9-x² e y=0 é feita girar em torno do eixo x.
Alguém poderia me ajuda como fazer o grafico dessa regiao e como calcular?
nao consigo imagina a "revolução" disso
-
iaraalmeida
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Jun 25, 2015 01:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Volume dos sólidos
por Santosk » Seg Abr 15, 2013 15:16
- 1 Respostas
- 1934 Exibições
- Última mensagem por young_jedi

Seg Abr 15, 2013 21:20
Geometria Espacial
-
- [Volumes de sólidos por rotação] Volume mudando os eixos
por Edmond Dantes » Sáb Out 20, 2018 11:31
- 2 Respostas
- 5654 Exibições
- Última mensagem por Edmond Dantes

Sáb Out 20, 2018 16:40
Cálculo: Limites, Derivadas e Integrais
-
- INTEGRAL - VOLUME
por Harley » Dom Mar 25, 2012 08:34
- 1 Respostas
- 2060 Exibições
- Última mensagem por LuizAquino

Dom Mar 25, 2012 12:25
Cálculo: Limites, Derivadas e Integrais
-
- Integral : volume
por Fernandobertolaccini » Sáb Jul 26, 2014 19:04
- 0 Respostas
- 1969 Exibições
- Última mensagem por Fernandobertolaccini

Sáb Jul 26, 2014 19:04
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] volume por integral
por beel » Dom Nov 27, 2011 20:44
- 5 Respostas
- 4730 Exibições
- Última mensagem por LuizAquino

Seg Dez 05, 2011 10:30
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.