• Anúncio Global
    Respostas
    Exibições
    Última mensagem

dificuldade em achar derivada(máximos e mínimos)

dificuldade em achar derivada(máximos e mínimos)

Mensagempor letciabr7 » Qua Jun 10, 2015 17:51

[Máximos e Mínimos] Determine as coordenadas do ponto da parábola y = 1 ? x²
mais próximoda reta x + 3y ? 9 = 0. Tentei achar a distância entre e reta, mas não consegui determinar a derivada desta distância para achar o valor mínimo.
letciabr7
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Mai 09, 2015 16:35
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em arquitetura e urbanismo
Andamento: cursando

Re: dificuldade em achar derivada(máximos e mínimos)

Mensagempor nakagumahissao » Sáb Jun 13, 2015 13:10

letciabr7,


Como tive que colocar junto um desenho e é meio trabalhoso colocá-lo aqui no post, coloquei toda a resulução em material separado.

Acesse:

http://matematicaparatodos.pe.hu/2015/0 ... e-minimos/

Para ver a resolução.


Espero ter ajudado.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.