por felipe_08 » Qui Mai 28, 2015 22:48
Seja r a reta tangente no ponto P =(

,

) à elipse

. Se Q = (x', y')

r, com

, mostre que:
x'²/a² + y'²/b² >1
Eu sei que como Q pertence a r e não pertence a elipse, que ele é externo, logo a equação é maior que 1, mas eu não consigo demonstrar isso. Se alguém puder me ajudar, agradeço muito.
-
felipe_08
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Abr 23, 2015 17:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (CÕNICAS) Elipse
por manuel_pato1 » Sex Nov 23, 2012 01:04
- 4 Respostas
- 2358 Exibições
- Última mensagem por manuel_pato1

Sex Nov 23, 2012 14:42
Geometria Analítica
-
- (CONICAS) equação da elipse
por manuel_pato1 » Sáb Nov 17, 2012 20:53
- 4 Respostas
- 2838 Exibições
- Última mensagem por manuel_pato1

Qua Nov 21, 2012 20:44
Geometria Analítica
-
- [Cônicas] Dúvida exerc. elipse
por MrJuniorFerr » Qua Out 31, 2012 12:58
- 1 Respostas
- 1530 Exibições
- Última mensagem por young_jedi

Qua Out 31, 2012 21:00
Geometria Analítica
-
- Cônicas - Elipse - Só uma dúvida simples
por samra » Sex Jan 24, 2014 01:39
- 2 Respostas
- 1683 Exibições
- Última mensagem por samra

Sex Jan 24, 2014 19:21
Geometria Analítica
-
- Me ajudem por favor.
por diegodalcol » Qui Mai 22, 2008 13:26
- 4 Respostas
- 4988 Exibições
- Última mensagem por admin

Qui Mai 22, 2008 16:33
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.