• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Primitiva do produto de uma integrada

Primitiva do produto de uma integrada

Mensagempor bebelo32 » Qui Mai 28, 2015 02:07

1) Sejam F e f definidas em [a;b] e tais que F' = f em [a;b]; assim F é uma primitivas de f em [a;b]. seja a partição p = a = {x}_{0} < {x}_{1} < {x}_{2} < ... < {x}_{n} = b de [a;b]. prove que escolhendo convenientemente {c}_{i} em[ {x}_{i-1};{x}_{i} ]
em tem -se
F (b) - F(a) = \sum_{i=1}^{n} f {c}_{i}\Delta{x}_{i}
bebelo32
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mai 03, 2014 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: computação
Andamento: formado

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.