por Rosi7 » Dom Mai 03, 2015 13:55
![\lim_{1}\sqrt[3]{t}-1/\sqrt{t}-1
\lim_{1}\sqrt[3]{{t}^{6}}-1/\sqrt{{t}^{6}}-1
\lim_{1}{t}^{\frac{6}{3}}-1/{t}^{\frac{6}{2}}-1
\lim_{1}{t}^{2}-1/{t}^{3}-1 \lim_{1}\sqrt[3]{t}-1/\sqrt{t}-1
\lim_{1}\sqrt[3]{{t}^{6}}-1/\sqrt{{t}^{6}}-1
\lim_{1}{t}^{\frac{6}{3}}-1/{t}^{\frac{6}{2}}-1
\lim_{1}{t}^{2}-1/{t}^{3}-1](/latexrender/pictures/7d8e32153f1eb3accbb9b45a47bbbf2a.png)
Consegui ir até o polinômio, mas não consigo abri-lo. Esta questão caiu em uma prova.. e a resposta a minha foi 2, porém já sei que está errada, pois consegui encontrar em um slide, mas só tem a resposta 2/3. O que estou fazendo errado? Isso está certo? Como chego em 2/3?
-
Rosi7
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Sáb Mai 02, 2015 18:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física
- Andamento: cursando
por ViniciusAlmeida » Seg Mai 04, 2015 09:41
Olá, Rosi.
Você não pode elevar os "t" a 6, pois dessa forma irá resultar em
![\sqrt[3]{t^6} = t^2 \sqrt[3]{t^6} = t^2](/latexrender/pictures/87eed8d7a1d0ad9a503ea9dc0a30adbc.png)
e na sua função original o valor é
![\sqrt[3]{t} \sqrt[3]{t}](/latexrender/pictures/d3a30e3fd87bd1c2aa7b090fade6b05c.png)
. Uma forma de resolução é:
![\lim_{x\rightarrow 1} (\frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1}) = \lim_{x\rightarrow 1} (\frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1})*(\frac{\sqrt{t} + 1}{\sqrt{t} + 1}) = \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{t - 1} \lim_{x\rightarrow 1} (\frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1}) = \lim_{x\rightarrow 1} (\frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1})*(\frac{\sqrt{t} + 1}{\sqrt{t} + 1}) = \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{t - 1}](/latexrender/pictures/6e7c983eb4f9f820c8080e9aa110743e.png)
Repare que escrever t-1 é a mesma coisa que escrever
![\sqrt[3]{t^3} - 1^3 \sqrt[3]{t^3} - 1^3](/latexrender/pictures/320ccdf1985342d62aa481d64d763e26.png)
, o que é uma diferença de cubos e pode ser fatorada (veja uma explicação melhor sobre essa fatoração aqui:
http://www.brasilescola.com/matematica/ ... erenca.htm)
![\lim_{x\rightarrow 1} \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{\sqrt[3]{t^3} - 1^3} = \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{(\sqrt[3]{t} - 1)((\sqrt[3]{t})^2 + \sqrt[3]{t} + 1)} = \frac{(\sqrt{t} + 1)}{((\sqrt[3]{t})^2 + \sqrt[3]{t} + 1)} \lim_{x\rightarrow 1} \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{\sqrt[3]{t^3} - 1^3} = \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{(\sqrt[3]{t} - 1)((\sqrt[3]{t})^2 + \sqrt[3]{t} + 1)} = \frac{(\sqrt{t} + 1)}{((\sqrt[3]{t})^2 + \sqrt[3]{t} + 1)}](/latexrender/pictures/a87ac0cb804d72967f05aad098ce05d5.png)
A partir dai é só você substituir 1, pois não há mais indeterminação, e encontrará 2/3
PS: Essa fatoração de cubos é muito útil nos limites, recomendo que dê uma olhada mesmo no link que deixei
-
ViniciusAlmeida
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Seg Fev 09, 2015 12:13
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Rosi7 » Dom Mai 10, 2015 20:43
Muito obrigada Vinicius! Bom domingo!
-
Rosi7
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Sáb Mai 02, 2015 18:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [polinômio]Relações de Girard + raízes de polinômio
por matano2104 » Qui Set 05, 2013 17:02
- 1 Respostas
- 7155 Exibições
- Última mensagem por young_jedi

Qui Set 05, 2013 17:57
Polinômios
-
- [limites] reciso de ajuda nessa questão de limites raiz quad
por alexia » Ter Nov 15, 2011 19:55
- 1 Respostas
- 5406 Exibições
- Última mensagem por LuizAquino

Qua Nov 16, 2011 15:16
Cálculo: Limites, Derivadas e Integrais
-
- [Limites]Preciso de ajuda para calcular alguns limites
por Pessoa Estranha » Ter Jul 16, 2013 17:15
- 2 Respostas
- 4749 Exibições
- Última mensagem por LuizAquino

Qua Jul 17, 2013 09:12
Cálculo: Limites, Derivadas e Integrais
-
- Polinômio
por Cleyson007 » Qua Mai 13, 2009 15:18
- 3 Respostas
- 3825 Exibições
- Última mensagem por Molina

Sex Mai 15, 2009 06:46
Polinômios
-
- Polinômio
por Cleyson007 » Qua Jul 15, 2009 23:17
- 3 Respostas
- 2457 Exibições
- Última mensagem por DanielFerreira

Ter Set 22, 2009 12:06
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.