por Roni Martins » Sáb Fev 13, 2010 15:30
Opa, boa tarde...estou com dificuldades em resolver esta questão de geometria envolvendo angulos...espero que voçes possam me ajudar..
tal questão pede para calcular a soma dos quatro angulos que estão na figura:

- Imagem 1 do exercicio
Sei que devo trabalhar com o suplemento dos angulos e com a definição de angulo externo...mas na hora de igualar uma equação na outra(pois vamos cair em varias equaçoes com varias variaveis), todas se anulam...
se voçes puderem me ajudar...
desde ja agradeço
obs: acho que devo começar o exercicio com na figura 2

- figura 2
-
Roni Martins
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Fev 11, 2010 12:34
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: curso de graduação em matemática
- Andamento: cursando
por MarceloFantini » Dom Fev 14, 2010 00:32
Boa noite.
Fiz na figura, espero que entenda:

Espero ter ajudado.
Um abraço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Roni Martins » Dom Fev 14, 2010 11:53
Oi, Bom dia Fantini, tudo bem?
Poxa, eu estava trabalhando com os angulos externos errados, depois da tua explicação atraves da imagem clareou tudo...
muito obrigado, tenha um otimo final de semana e um bom carnaval!
Abraços!
-
Roni Martins
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Fev 11, 2010 12:34
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: curso de graduação em matemática
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Teorema de Tales
por LuanRodrigues » Qua Mai 04, 2011 23:42
- 1 Respostas
- 2492 Exibições
- Última mensagem por FilipeCaceres

Qua Mai 04, 2011 23:46
Geometria Plana
-
- Teorema de Tales
por LuanRodrigues » Qui Mai 05, 2011 21:26
- 1 Respostas
- 4880 Exibições
- Última mensagem por Molina

Sex Mai 06, 2011 12:52
Geometria Analítica
-
- teorema de tales
por bmachado » Seg Mar 26, 2012 17:51
- 3 Respostas
- 2376 Exibições
- Última mensagem por ednaldo1982

Sex Mar 30, 2012 01:11
Geometria Plana
-
- Teorema de Tales
por Jhenrique » Seg Nov 12, 2012 04:59
- 0 Respostas
- 1236 Exibições
- Última mensagem por Jhenrique

Seg Nov 12, 2012 04:59
Álgebra Elementar
-
- [Teorema de Tales]
por Giudav » Dom Nov 25, 2012 17:18
- 1 Respostas
- 2145 Exibições
- Última mensagem por e8group

Dom Nov 25, 2012 18:52
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.