por Roni Martins » Sáb Fev 13, 2010 15:30
Opa, boa tarde...estou com dificuldades em resolver esta questão de geometria envolvendo angulos...espero que voçes possam me ajudar..
tal questão pede para calcular a soma dos quatro angulos que estão na figura:

- Imagem 1 do exercicio
Sei que devo trabalhar com o suplemento dos angulos e com a definição de angulo externo...mas na hora de igualar uma equação na outra(pois vamos cair em varias equaçoes com varias variaveis), todas se anulam...
se voçes puderem me ajudar...
desde ja agradeço
obs: acho que devo começar o exercicio com na figura 2

- figura 2
-
Roni Martins
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Fev 11, 2010 12:34
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: curso de graduação em matemática
- Andamento: cursando
por MarceloFantini » Dom Fev 14, 2010 00:32
Boa noite.
Fiz na figura, espero que entenda:

Espero ter ajudado.
Um abraço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Roni Martins » Dom Fev 14, 2010 11:53
Oi, Bom dia Fantini, tudo bem?
Poxa, eu estava trabalhando com os angulos externos errados, depois da tua explicação atraves da imagem clareou tudo...
muito obrigado, tenha um otimo final de semana e um bom carnaval!
Abraços!
-
Roni Martins
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Fev 11, 2010 12:34
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: curso de graduação em matemática
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Teorema de Tales
por LuanRodrigues » Qua Mai 04, 2011 23:42
- 1 Respostas
- 2574 Exibições
- Última mensagem por FilipeCaceres

Qua Mai 04, 2011 23:46
Geometria Plana
-
- Teorema de Tales
por LuanRodrigues » Qui Mai 05, 2011 21:26
- 1 Respostas
- 4955 Exibições
- Última mensagem por Molina

Sex Mai 06, 2011 12:52
Geometria Analítica
-
- teorema de tales
por bmachado » Seg Mar 26, 2012 17:51
- 3 Respostas
- 2500 Exibições
- Última mensagem por ednaldo1982

Sex Mar 30, 2012 01:11
Geometria Plana
-
- Teorema de Tales
por Jhenrique » Seg Nov 12, 2012 04:59
- 0 Respostas
- 1290 Exibições
- Última mensagem por Jhenrique

Seg Nov 12, 2012 04:59
Álgebra Elementar
-
- [Teorema de Tales]
por Giudav » Dom Nov 25, 2012 17:18
- 1 Respostas
- 2222 Exibições
- Última mensagem por e8group

Dom Nov 25, 2012 18:52
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.