por Padoan » Qui Fev 11, 2010 16:05
Estou tentando resolver este exercício, porém não consigo chegar a um resultado... teria como me concederem uma dica sobre como chegar a resolução da questão?

Não sei se estou certo, mas estou fazendo o seguinte:
O volume do cubo é a³... e o da piramede seria V = ab.h/3 que da a²/12, como descobrir o valor de a? já tentei igualar mas não achei... se alguem puder me dar um luz, agradeço ):
Editado pela última vez por
Padoan em Qui Fev 11, 2010 18:05, em um total de 1 vez.
-
Padoan
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Fev 11, 2010 14:34
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Qui Fev 11, 2010 16:56
O enunciado ficou cortado. Tem como escrever sem usar uma imagem?

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Padoan » Qui Fev 11, 2010 16:59
Sim sim.
Em uma indústria de velas, a parafina é armazenada em caixas cúbicas, cujo
lado mede a.
Depois de derretida, a parafina é derramada em moldes em formato de pirâmides
de base quadrada, cuja altura e cuja aresta da base medem, cada uma, 2/a .
Considerando-se essas informações, é CORRETO afirmar que, com a parafina
armazenada em apenas uma dessas caixas, enche-se um total de
A) 6 moldes.
B) 8 moldes.
C) 24 moldes.
D) 32 moldes.
-
Padoan
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Fev 11, 2010 14:34
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Qui Fev 11, 2010 18:09
Um modo rápido de resolver é dar um valor aleatório para
a. Por exemplo,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Molina » Qui Fev 11, 2010 21:01
Boa noite, Padoan.
Fico feliz que você tenha conseguido resolver o problema da parafina com a ajuda dos colegas do fórum.
Porém, temos uma regra de criar apenas uma dúvida por tópico. Com isso o fórum fica mais organizado e as questões mais fáceis de serem entendidas por outra pessoa que tenha uma dúvida parecida (ou igual) a sua.
Por isso movi sua outra questão envolvendo triângulo e quadrado para cá: viewtopic.php?f=119&t=1554
Qualquer dúvida me procure.
Grande abraço e faça bom uso desta ferramenta! 
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Espacial - Pirâmide] Pirâmide de Cartolina
por raimundoocjr » Qui Ago 02, 2012 22:13
- 1 Respostas
- 2608 Exibições
- Última mensagem por MarceloFantini

Qui Ago 02, 2012 23:04
Geometria Espacial
-
- piramide
por Gir » Ter Set 22, 2009 12:01
- 2 Respostas
- 2743 Exibições
- Última mensagem por Gir

Qua Set 23, 2009 11:02
Geometria Espacial
-
- Pirâmide
por renataf » Seg Nov 29, 2010 10:06
- 3 Respostas
- 4410 Exibições
- Última mensagem por fttofolo

Seg Nov 29, 2010 11:09
Geometria Espacial
-
- Pirâmide
por Ani » Dom Dez 05, 2010 15:12
- 4 Respostas
- 3365 Exibições
- Última mensagem por Elcioschin

Sex Dez 10, 2010 21:42
Geometria Espacial
-
- Pirâmide
por Cleison » Seg Mai 16, 2011 17:11
- 1 Respostas
- 1479 Exibições
- Última mensagem por LuizAquino

Ter Jun 21, 2011 23:21
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.