• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[ajuda] Piramide

[ajuda] Piramide

Mensagempor Padoan » Qui Fev 11, 2010 16:05

Estou tentando resolver este exercício, porém não consigo chegar a um resultado... teria como me concederem uma dica sobre como chegar a resolução da questão?

Imagem

Não sei se estou certo, mas estou fazendo o seguinte:
O volume do cubo é a³... e o da piramede seria V = ab.h/3 que da a²/12, como descobrir o valor de a? já tentei igualar mas não achei... se alguem puder me dar um luz, agradeço ):
Editado pela última vez por Padoan em Qui Fev 11, 2010 18:05, em um total de 1 vez.
Padoan
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Fev 11, 2010 14:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [ajuda] Piramide

Mensagempor Molina » Qui Fev 11, 2010 16:56

O enunciado ficou cortado. Tem como escrever sem usar uma imagem?

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: [ajuda] Piramide

Mensagempor Padoan » Qui Fev 11, 2010 16:59

Sim sim.

Em uma indústria de velas, a parafina é armazenada em caixas cúbicas, cujo
lado mede a.
Depois de derretida, a parafina é derramada em moldes em formato de pirâmides
de base quadrada, cuja altura e cuja aresta da base medem, cada uma, 2/a .

Considerando-se essas informações, é CORRETO afirmar que, com a parafina
armazenada em apenas uma dessas caixas, enche-se um total de

A) 6 moldes.
B) 8 moldes.
C) 24 moldes.
D) 32 moldes.
Padoan
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Fev 11, 2010 14:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [ajuda] Piramide

Mensagempor Molina » Qui Fev 11, 2010 18:09

Um modo rápido de resolver é dar um valor aleatório para a. Por exemplo, a=2

:lol:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: [ajuda] Piramide

Mensagempor Lucio Carvalho » Qui Fev 11, 2010 18:10

Olá Padoan,
Apresento em anexo uma das possíveis maneiras de resolver o exercício.

Adeus e espero ter ajudado!
Anexos
Relação de volumes.jpg
Relação de volumes
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: [ajuda] Piramide

Mensagempor Molina » Qui Fev 11, 2010 21:01

Boa noite, Padoan.

Fico feliz que você tenha conseguido resolver o problema da parafina com a ajuda dos colegas do fórum.

Porém, temos uma regra de criar apenas uma dúvida por tópico. Com isso o fórum fica mais organizado e as questões mais fáceis de serem entendidas por outra pessoa que tenha uma dúvida parecida (ou igual) a sua.

Por isso movi sua outra questão envolvendo triângulo e quadrado para cá: viewtopic.php?f=119&t=1554

Qualquer dúvida me procure.

Grande abraço e faça bom uso desta ferramenta!
:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D