• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fuvest-SP

Fuvest-SP

Mensagempor luanxd » Dom Fev 07, 2010 20:16

Dada a equação
\frac{2}{x^2-1}+\frac{1}{x+1}=-1, então:
V=(1)
V=(-1,0,1)
V=(-1,1)
V=(-1,1)
V=(0)


Por favor me ajudem a resolver está equação.
luanxd
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 25, 2010 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Fuvest-SP

Mensagempor Molina » Seg Fev 08, 2010 15:58

luanxd escreveu:Dada a equação
\frac{2}{x^2-1}+\frac{1}{x+1}=-1, então:
V=(1)
V=(-1,0,1)
V=(-1,1)
V=(-1,1)
V=(0)


Por favor me ajudem a resolver está equação.

Boa tarde,

\frac{2}{x^2-1}+\frac{1}{x+1}=-1

\frac{2}{(x+1)(x-1)}+\frac{1}{x+1}=-1

\frac{2+(x-1)=-(x+1)(x-1)}{(x+1)(x-1)}

2+x-1=-x^2+1

x^2+x=0

x(x+1)=0

x'=0
x''=-1

0 e -1 seriam as soluções da equação. Porém, temos que -1 não pode ser solução do sistema, já que substituindo-o os denominadores da fração ficam igual a zero (o que não pode).

Resposta: V=(0)

Qualquer dúvida em alguma passagem, informe!

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Fuvest-SP

Mensagempor luanxd » Seg Fev 08, 2010 18:51

Ola Molina obrigado pela ajuda, mas eu não entendi muito bem o finalzinho.

x^2+x=0

x(x+1)=0

Como você acho o X1 eo X2?


Obrigado pela atenção.
luanxd
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 25, 2010 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Fuvest-SP

Mensagempor Molina » Seg Fev 08, 2010 18:59

luanxd escreveu:Ola Molina obrigado pela ajuda, mas eu não entendi muito bem o finalzinho.

x^2+x=0

x(x+1)=0

Como você acho o X1 eo X2?


Obrigado pela atenção.


Chegamos até aqui: x^2+x=0

Agora vou fatorar esse termo, colocando x em evidência:

x(x+1)=0

Temos dois "números" x e x+1 que multiplicados dão zero. Como o produto é 0, ou o primeiro é igual a 0 ou o segundo é igual a 0. E foi isso que eu fiz:

x=0 (ou seja, o primeiro termo desse produto é igual a zero)
Note que substituindo 0 por x a equação é válida, pois ficamos com 0*(0+1)=0*1=0

E fazemos a mesma coisa com o segundo termo, igualando-o a zero:
(x+1)=0 \Rightarrow x=-1

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Fuvest-SP

Mensagempor luanxd » Ter Fev 09, 2010 11:06

Obrigado!
luanxd
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 25, 2010 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}