por Almar » Qui Fev 04, 2010 15:33
Prezados,
Sou novo no fórum, gostaria que alguém pudesse me responder o que segue:
Em se tratatando de Conjuntos, provar das três formas abaixo listadas que a Operação "Diferença Simétrica" é associativa:

1. Provar por tabela verdade:
2. Provar por Diagrama de Venn:
3. Provar por algebra:
Aguardo respostas e desde já agradeço a todos.
Att.
Almar Santiago
Bacharelando em Ciências da Computação.
-
Almar
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Fev 04, 2010 15:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: CIÊNCIAS DA COMPUTAÇÃO
- Andamento: cursando
por diasbr » Qui Fev 04, 2010 20:49

dai fica fácil
dica considere cada elemento como x-y como um conjunto e recorra à associativa do au(buc)
tabela dica escreva cada elemento
assim
três elementos = Combinatória 2x2x2=8 depois check se verdadeiro ou falso
a b c (a - c) a U b

depois de vc fazer isso tudo verifique a tautologia que vc deseja
o o o 0 0 0
o o 1 0 0 0
o 1 0 0 1 0
o 1 1 0 1 0
1 0 0 1 1 0
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 0 1 1
van é o desenho de círculos pinte eles e fica visual
-
diasbr
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Fev 03, 2010 21:42
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: engenharia
- Andamento: cursando
por Incognite » Sáb Mar 10, 2018 19:27
diasbr escreveu:
dai fica fácil
dica considere cada elemento como x-y como um conjunto e recorra à associativa do au(buc)
tabela dica escreva cada elemento
assim
três elementos = Combinatória 2x2x2=8 depois check se verdadeiro ou falso
a b c (a - c) a U b

depois de vc fazer isso tudo verifique a tautologia que vc deseja
o o o 0 0 0
o o 1 0 0 0
o 1 0 0 1 0
o 1 1 0 1 0
1 0 0 1 1 0
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 0 1 1
van é o desenho de círculos pinte eles e fica visual
Olá, estou com a mesma dúvida do postador do tópico. Como consigo provar algébricamente dessa forma que você disse?? Estou tentando há horas esse exercício, até agora nada
-
Incognite
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Mar 10, 2018 18:17
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ciências biológicas
- Andamento: cursando
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Conjuntos] Diferença simétrica
por Incognite » Sáb Mar 10, 2018 18:22
- 1 Respostas
- 3350 Exibições
- Última mensagem por adauto martins

Qui Abr 26, 2018 20:15
Conjuntos
-
- Endomorfismo e matriz anti simetrica
por matlearn » Dom Mar 20, 2011 23:40
- 0 Respostas
- 2361 Exibições
- Última mensagem por matlearn

Dom Mar 20, 2011 23:40
Geometria Analítica
-
- [Algebra Linear] Matriz Simetrica
por fabriel » Sex Mai 31, 2013 17:07
- 5 Respostas
- 6287 Exibições
- Última mensagem por Molina

Sex Mai 31, 2013 22:25
Álgebra Linear
-
- Diferença
por DanielFerreira » Sáb Set 26, 2009 12:10
- 4 Respostas
- 4963 Exibições
- Última mensagem por DanielFerreira

Ter Jun 08, 2010 18:19
Piadas
-
- A Diferença de g(t)-h(t)
por Rayane01 » Sex Mar 31, 2017 20:38
- 3 Respostas
- 7369 Exibições
- Última mensagem por Cleyson007

Sáb Abr 01, 2017 12:33
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.