Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por anapaulausp » Sex Jan 29, 2010 15:48
Eu reduzi tudo para metro, calculei a área de todo o salão, depois subtrai o que nao é para pintar (neste caso o vao da porta e o vao da janela). Em seguida fiz uma regra de tres simples. e cheguei ao resultado de 24 litros, mais pelo gabarito a resposta correta é 28 litros.
Por favor onde estou errando, me ajudem!!!
As dimensões interna de um salão foram obtidas em unidades não muito usuais: 0,007 km de largura, 80 dm de comprimento e 400cm de altura. Para pintar apenas o teto e as paredes internas, descontando-se o vão de uma porta de 5,0 m² de área e o vão de uma janela de 3,0 m² de área, vai se utilizar uma tinta cujo rendimento é tal que 1 litro pinta 0,06 dam². Para essa pintura, são necessários exatamente
a) 18 litros
b) 21 litros
c) 24 litros
d) 28 litros
e) 36 litros.
-
anapaulausp
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Nov 17, 2009 16:20
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Lucio Carvalho » Sáb Jan 30, 2010 03:24
Olá Ana Paula,
Calculamos a área interna das 4 paredes e do tecto (o chão não vai ser pintado): 2 x (7 x 4) + 2 x (8 x 4) + 8 x 7 = 176 metros quadrados
Subtraímos, em seguida, o vão da porta e o vão da janela: 176 - 8 = 168 metros quadrados
Finalmente:
1 litro --------> 6 metros quadrados
x litros -------> 168 metros quadrados
x = 168/6 = 28 litros
A opção correcta é a alínea d)
Espero ter ajudado!
-

Lucio Carvalho
- Colaborador Voluntário

-
- Mensagens: 127
- Registrado em: Qua Ago 19, 2009 11:33
- Localização: Rua 3 de Fevereiro - São Tomé
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física/Química
- Andamento: formado
por Alex farias » Dom Jan 31, 2010 17:49
(Cesgranrio) “Ônibus da linha 572 passam pelo largo do machado de 7 em 7 minutos. Se um ônibus passou às 15h 42 min. quem chegar ao largo do machado às 18h 3 min. esperara quantos minutos pelo próximo ônibus.”
Tentei fazer da seguinte forma:
18°03’- 15°42’=2°21’
Transformando em minutos seria 141 minutos de diferença de tempo já tentei dividir por 7 mas não consigo chegar a uma resposta.
-
Alex farias
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Jan 31, 2010 17:12
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Elcioschin » Dom Jan 31, 2010 20:27
Alex
Por favor não aproveite uma mensagem existente para colocar uma dúvida sua.
Abra um novo tópico e coloque sua mensagem: assim vc será melhor atendido.
Vou dar uma dica: até o resultado 141 vc acertou. Dividindo por 7 o quociente será o número de ônibus que passaram e o resto é o tempo LOGO após a passagem do último. Logo .....
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por anapaulausp » Seg Fev 01, 2010 10:00
Valeu!!!
Eu estava esquecendo de multiplicar as medidas das paredes por 2.
Obrigada
-
anapaulausp
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Nov 17, 2009 16:20
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Desafios Médios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problemas de MMC
por Gisele Rocha » Qua Jun 24, 2009 12:33
- 2 Respostas
- 4305 Exibições
- Última mensagem por Gisele Rocha

Qua Jun 24, 2009 16:28
Funções
-
- problemas
por von grap » Qua Jun 30, 2010 22:47
- 1 Respostas
- 2691 Exibições
- Última mensagem por Neperiano

Qui Ago 25, 2011 18:11
Álgebra Elementar
-
- problemas de 2°
por stanley tiago » Qui Fev 10, 2011 17:17
- 2 Respostas
- 3084 Exibições
- Última mensagem por stanley tiago

Qui Fev 10, 2011 21:43
Álgebra Elementar
-
- problemas
por jose henrique » Sáb Fev 12, 2011 15:07
- 7 Respostas
- 4604 Exibições
- Última mensagem por LuizAquino

Dom Fev 13, 2011 17:02
Geometria Plana
-
- problemas
por lais1906 » Qui Out 11, 2012 15:02
- 2 Respostas
- 2018 Exibições
- Última mensagem por MarceloFantini

Qui Out 11, 2012 15:16
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.