por Cleyson007 » Sex Jan 22, 2010 18:12
Boa tarde!
Estou meio perdido quanto a resolução do problema abaixo.
Segue exercício:
Determine, usando a divisão euclidiana, o quociente q(x) e o resto r(x) da divisão de f(x) por g(x):
f(x) = 2x² + 1, g(x) = x³ + 2x² - 1
--> Gostaria de saber se a "Divisão Euclidiana" é a mesma do "Método da Chave". Outra dúvida é a seguinte: como dividir um polinômio de grau menor por outro de grau maior?
Agradeço a atenção!
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Molina » Sex Jan 22, 2010 20:30
Cleyson007 escreveu:Boa tarde!
Estou meio perdido quanto a resolução do problema abaixo.
Segue exercício:
Determine, usando a divisão euclidiana, o quociente q(x) e o resto r(x) da divisão de f(x) por g(x):
f(x) = 2x² + 1, g(x) = x³ + 2x² - 1
--> Gostaria de saber se a "Divisão Euclidiana" é a mesma do "Método da Chave". Outra dúvida é a seguinte: como dividir um polinômio de grau menor por outro de grau maior?
Agradeço a atenção!
Boa noite, Cleyson.
É isso mesmo. O método da divisão euclidiana é o uso de chaves, assim como se faz com um número natural.
Agora quanto a divisao de um polinômio de grau menor pelo de um grau maior é difícil de se ver. O que eu faria neste caso é usar potências negativas, ex:

Você tem o gabarito?
Bom estudo,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por MarceloFantini » Sáb Jan 23, 2010 22:00
Boa noite.
Acredito que isto não seja possível, pois pelo o que me recordo um polinômio precisa ter expoentes inteiros e maiores que um.
Um abraço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Cleyson007 » Sáb Jan 23, 2010 22:26
Boa noite Molina e Fantini!
Fiz a questão de postar esse exercício pelo fato de tê-lo achado estranho (eu também nunca havia visto tal fato).
Molina, não tenho o gabarito da questão.. tentei fazer pelo caminho que me aconselhou, mas também não obtive resultado.
Agradeço a ajuda dos dois.
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por MarceloFantini » Sáb Jan 23, 2010 22:30
Cleyson, acredito que a resposta seja:


Um abraço.
P.S.: Gostaria de pegar o seu MSN pra conversamos.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LÓGICA, DIVISÃO EUCLIDIANA]
por juliohenriquelima14 » Seg Dez 15, 2014 10:02
- 1 Respostas
- 1618 Exibições
- Última mensagem por adauto martins

Qua Dez 17, 2014 15:10
Aritmética
-
- Euclidiana
por apotema2010 » Sex Mai 07, 2010 15:03
- 2 Respostas
- 1266 Exibições
- Última mensagem por apotema2010

Sex Mai 07, 2010 15:57
Geometria Plana
-
- Geometria Euclidiana
por Caeros » Seg Mai 25, 2009 19:13
- 1 Respostas
- 1962 Exibições
- Última mensagem por Caeros

Seg Mai 25, 2009 19:33
Geometria Plana
-
- Geometria Euclidiana
por rheilagouveia » Sex Mai 21, 2010 02:25
- 1 Respostas
- 3482 Exibições
- Última mensagem por MarceloFantini

Sex Mai 21, 2010 14:15
Apresentação dos Participantes
-
- Geometria Euclidiana
por _Jane » Sex Abr 05, 2013 15:56
- 2 Respostas
- 1590 Exibições
- Última mensagem por _Jane

Sáb Abr 06, 2013 00:48
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.