• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite de funções

Limite de funções

Mensagempor jeremiashenrique » Sex Abr 17, 2015 16:07

Pessoal, já tentei e tentei, bati cabeça de todas as maneiras, vi vídeo aulas e nada de conseguir responder. Me ajudem!
A questão está em anexo. E se possivel com explicação, pois tenho que entender a questão, alguém me dê uma luz.
Anexos
desafio.jpg
Questão de limite de funções
jeremiashenrique
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 17, 2015 15:55
Formação Escolar: GRADUAÇÃO
Área/Curso: administração de empresas
Andamento: cursando

Re: Limite de funções

Mensagempor DanielFerreira » Sex Abr 17, 2015 20:32

Olá Jeremias, boa noite!

A questão indaga se existe o limite de f quando x tende a 1; ora, substitua o um no limite. Tendo obtido \frac{3}{0}, estamos diante de uma impossibilidade...

Então, o que devemos fazer? verificar se os limites laterais são iguais, se sim, a resposta é o valor encontrado; se não, o limite não existe!

Parte I:

\\ \lim_{x \to 1^+} \frac{x^2 + x + 1}{x^2 - 1} = \\\\\\ \lim_{x \to 1^+} \frac{x^2 + x + 1}{(x + 1)(x - 1)} = \\\\\\ \lim_{x \to 1^+} \frac{1}{x - 1} \cdot \frac{x^2 + x + 1}{x + 1} = \\\\\\ + \infty \cdot \frac{3}{2} = \\\\ \boxed{+ \infty}

Sugiro que faça a parte II, isto é, encontre o valor de \lim_{x \to 1^-} \frac{x^2 + x + 1}{x^2 - 1}... E, tente concluir o exercício.

Até breve!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.