por jeremiashenrique » Sex Abr 17, 2015 16:07
Pessoal, já tentei e tentei, bati cabeça de todas as maneiras, vi vídeo aulas e nada de conseguir responder. Me ajudem!
A questão está em anexo. E se possivel com explicação, pois tenho que entender a questão, alguém me dê uma luz.
- Anexos
-

- Questão de limite de funções
-
jeremiashenrique
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sex Abr 17, 2015 15:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: administração de empresas
- Andamento: cursando
por DanielFerreira » Sex Abr 17, 2015 20:32
Olá
Jeremias, boa noite!
A questão indaga se existe o limite de

quando x tende a 1; ora, substitua o um no limite. Tendo obtido

, estamos diante de uma impossibilidade...
Então, o que devemos fazer? verificar se os limites laterais são iguais, se sim, a resposta é o valor encontrado; se não, o limite não existe!
Parte I:

Sugiro que faça a
parte II, isto é, encontre o valor de

... E, tente concluir o exercício.
Até breve!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4551 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4260 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
-
- Limite de funções
por jeremiashenrique » Sex Abr 17, 2015 16:07
- 1 Respostas
- 1550 Exibições
- Última mensagem por adauto martins

Seg Abr 20, 2015 20:57
Funções
-
- Limite de funções
por jeremiashenrique » Ter Abr 21, 2015 12:16
- 2 Respostas
- 1600 Exibições
- Última mensagem por jeremiashenrique

Qui Abr 23, 2015 00:18
Funções
-
- [Limite] Funções trigonométricas
por Aliocha Karamazov » Qui Out 27, 2011 18:13
- 4 Respostas
- 1901 Exibições
- Última mensagem por Aliocha Karamazov

Sex Out 28, 2011 03:27
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.