• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quero saber se minha resposta está correta

Quero saber se minha resposta está correta

Mensagempor Raquel299 » Seg Mar 09, 2015 09:53

Elimine o módulo em:
|2x-4|+|x-2|.
Minha resposta:
|2x-4|+|x-2| = 2x-4-x-2 = x-6

|2x-4|+|x-2|= 2x-4+x+2=3x-2

|2x-4|+|x-2|= -2x+4-x-2=-3x+2

Agora tenho dúvida de como fazer o restante. Tenho muita dificuldade de colocar ? ou ? tal número no final. Precisa fazer isso?
Raquel299
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Mar 08, 2015 14:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Ciências Biológicas
Andamento: cursando

Re: Quero saber se minha resposta está correta

Mensagempor Russman » Seg Mar 09, 2015 21:19

Note que a sua função f(x) = \left | 2x-4 \right |+\left | x-2 \right | pode ser simplificada para f(x) = 3 \left | x-2 \right |, já que

\left | 2x-4 \right | = \left | 2(x-2) \right | =  \left | 2 \right | \left | x-2 \right | = 2\left | x-2 \right |.



Daí, para x<2

f(x<2) = 3(-x+2) = -3x+6

E para x>2

f(x>2) = 3(x-2) = 3x-6.

Logo,

f(x) = \left\{\begin{matrix}
-3x+6 &,x\leq 2 \\ 
 3x-6& ,x\geq 2
\end{matrix}\right.

já que a função é contínua para x=2.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Quero saber se minha resposta está correta

Mensagempor willian estudante » Ter Mar 10, 2015 17:19

olá, gostaria de aproveitar o tópico já que está voltado no mesmo assunto (função) e minha dúvida de encaixa na função modular.
como ficaria o gráfico da seguinte função? obrigado, e perdoem se fiz a solicitação em local indevido.
http://prntscr.com/6f5o8g
willian estudante
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mar 03, 2015 18:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Quero saber se minha resposta está correta

Mensagempor Raquel299 » Sex Abr 10, 2015 10:49

Russman escreveu:Note que a sua função f(x) = \left | 2x-4 \right |+\left | x-2 \right | pode ser simplificada para f(x) = 3 \left | x-2 \right |, já que

\left | 2x-4 \right | = \left | 2(x-2) \right | =  \left | 2 \right | \left | x-2 \right | = 2\left | x-2 \right |.



Daí, para x<2

f(x<2) = 3(-x+2) = -3x+6

E para x>2

f(x>2) = 3(x-2) = 3x-6.

Logo,

f(x) = \left\{\begin{matrix}
-3x+6 &,x\leq 2 \\ 
 3x-6& ,x\geq 2
\end{matrix}\right.

já que a função é contínua para x=2.


Obrigada Russman!
Raquel299
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Mar 08, 2015 14:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Ciências Biológicas
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}