• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo1] Limites trigonométricos

[Cálculo1] Limites trigonométricos

Mensagempor Larissa28 » Qui Mar 26, 2015 20:49

Obter, caso exista, \lim_{x\rightarrow0} (f(x)-f(0))/x-0, onde f e dada por:

a) f(x) = {x}^{2}sen(1/x), se x\neq0
f(x)=0, se x=0
Resposta: 0

b) f(x) = x * sen(1/x), se x\neq0
f(x)=0, se x=0
Resposta: Não existe
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando

Re: [Cálculo1] Limites trigonométricos

Mensagempor adauto martins » Sex Mar 27, 2015 17:29

L=\lim_{x\rightarrow 0}f(x)/x...
a)L=\lim_{x\rightarrow 0}{x}^{2}sen(1/x)/x=x.sen(1/x)...faz-se y=1/x,logo...x\rightarrow 0,y\rightarrow \infty...entao:L=\lim_{Y\rightarrow \infty}seny/y=0,pois seny varia no intervalo(-1,1),e y cresce indefinidamente...
b)L=\lim_{x\rightarrow 0}x.sen(1/x)/x=\lim_{x\rightarrow 0}sen(1/x)=sen(\lim_{x\rightarrow 0}1/x)=sen(\infty),q. nao existe,pois -\pi\preceq 1/x\preceq \pi
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Cálculo1] Limites trigonométricos

Mensagempor adauto martins » Sáb Mar 28, 2015 11:42

uma correçao letra b)...
seja x=1/n\pi\Rightarrow sen(1/n\pi)=0...
seja x=1/(\pi/2+2n\pi)\Rightarrow sen(1/(\pi/2+\pin\pi)=1......ou seja tera valores diferentes a medida q.n\rightarrow \infty
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)