• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Bases Ortonormais] - Ajuda Exercício

[Bases Ortonormais] - Ajuda Exercício

Mensagempor Anna_lu » Seg Mar 23, 2015 14:23

Olá! Eu estou com dúvida não na resolução do seguinte exercício, mas na interpretação dele. o enunciado é:

Se {\vec a , \vec b , \vec c} é uma base ortonormal e \vec u, um vetor qualquer, então \vec u =( \vec a .\vec u) \vec a + ( \vec b . \vec u) \vec b + (\vec c . \vec u) \vec c..

a resolução dele : O que sabemos é que \vec u pode ser escrito de maneira única como uma combinação linear de \vec u = x \vec a + y \vec b + z \vec c.. Calculando, então, o produto interno \vec a . \vec u, obtemos \vec a . \vec u= x( \vec a . \vec a) + y( \vec a. \vec b) + z(\vec a. \vec c) = x.

A minha dúvida é a seguinte, por que a expressão : \vec u =( \vec a .\vec u) \vec a + ( \vec b . \vec u) \vec b + (\vec c . \vec u) \vec c.. multiplica por \vec a( após ao primeiro parênteses) , por \vec b ( após o segundo parênteses) e por \vec c( após ao terceiro parênteses)?

Obrigada,
Anna_lu
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Mar 23, 2015 12:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Bases Ortonormais] - Ajuda Exercício

Mensagempor adauto martins » Seg Mar 23, 2015 19:33

uma base {a,b,c} eh ortonormal,qdo os vetores sao unitarios e mutuamente pérpndiculares,ou seja:
\left|a \right|=\left|b \right|=\left|c \right|=1 e a.b=a.c=b.c=0...
entao seja u um vetor no espaço gerado por {a,b,c}...u=x.a+y.b+z.c...x,y,z \in \Re...logo...
a.u=a.(x.a)+a.(y.b)+a.(z.b)=x.(a.a)+y(a.b)+z(a.c)=x...x=(a.u)...de modo analogo teremos p/b.u e c.u...
assim...u=(a.u).a+(b.u).b+(c.u).c...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.