• Anúncio Global
    Respostas
    Exibições
    Última mensagem

transformações e espaços lineares

transformações e espaços lineares

Mensagempor bebelo32 » Dom Mar 22, 2015 19:19

1) verificarb quais deles são espaço vetoriais. para aqueles que nao são espaços vetoriais, citar os axiomas que nao se verificar

A) = [ \begin{pmatrix}
   0 & a  \\ 
   b & 0 
\end{pmatrix}  \in M(2,2)/a.b \in R ] com as operações usuais
bebelo32
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mai 03, 2014 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: computação
Andamento: formado

Re: transformações e espaços lineares

Mensagempor Russman » Seg Mar 23, 2015 02:04

Você deve verificar os axiomas da adição e multiplicação.

(x_1,x_2) + (y_1,y_2) = (x_1 + x_2 , y_1+y_2)
a(x_1,x_2) = (ax_1,ax_2)

De fato, se você escrever A = (a,b) terá

(a,b) + (c,d) = (a+c,b+d)
k(a,b) = (ka,kb)
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}