por Razoli » Qua Mar 18, 2015 19:03
Alguém poderia me ajudar com esse exercícios sobre espaço vetorial? não estou conseguindo lidar muito bem com funções.
Determine o vetor nulo nos seguintes espaços vetoriais:
a) O espaço:
V = {f : [0,1] / f é contínua }
b) O espaço das funções de uma variável com domínio nos números naturais.
c) O espaço dos polinômios de grau três com as operações canônicas.
-
Razoli
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sáb Abr 06, 2013 15:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatistica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- verificação espaço vetor.
por amr » Qua Abr 06, 2011 12:15
- 0 Respostas
- 1370 Exibições
- Última mensagem por amr

Qua Abr 06, 2011 12:15
Introdução à Álgebra Linear
-
- Espaço vetorial
por amr » Sex Abr 01, 2011 15:30
- 4 Respostas
- 7838 Exibições
- Última mensagem por Rosi7

Sáb Mai 30, 2015 00:16
Introdução à Álgebra Linear
-
- Espaço vetorial
por oliveiramerika » Sáb Jan 19, 2013 10:03
- 1 Respostas
- 5823 Exibições
- Última mensagem por young_jedi

Dom Jan 20, 2013 09:29
Álgebra Linear
-
- Espaço Vetorial
por manuel_pato1 » Sáb Mar 02, 2013 20:03
- 0 Respostas
- 1791 Exibições
- Última mensagem por manuel_pato1

Sáb Mar 02, 2013 20:03
Álgebra Linear
-
- Espaço Vetorial
por erickm93 » Qui Out 17, 2013 16:48
- 0 Respostas
- 1629 Exibições
- Última mensagem por erickm93

Qui Out 17, 2013 16:48
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.