• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Frações Algébricas] Como simplifico essa fração?

[Frações Algébricas] Como simplifico essa fração?

Mensagempor Kah » Qua Mar 18, 2015 17:44

Olá! Alguém pode me ajudar, por favor?

Como simplifico essa fração algébrica?

Sei que no numerador tenho uma diferença entre quadrados e no denominador um diferença entre cubos. Fiz assim:

Numerador:

m³ - 1 = (m - 1)(m² + m + 1)

Denominador

m^6 - 1 = (m²)³ - (1)³ = (m² - 1)(m^4 + m² + 1) = [(m + 1)(m - 1)]( m^4 + m² + 1 )

Simplifiquei (m - 1) do numerador com o (m - 1) do denominador, ficando assim:

(m² + m + 1)/ (m + 1)( m^4 + m² + 1 )

Não consigo sair disso :/

O que fiz de errado?
Anexos
Mat.png
Mat.png (3.53 KiB) Exibido 1989 vezes
Kah
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Mar 18, 2015 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Frações Algébricas] Como simplifico essa fração?

Mensagempor Russman » Qua Mar 18, 2015 22:38

Pensei uma forma mais direta.

Se você tomar m^6 -1 = (m^3)^2 - 1^2 = (m^3+1)(m^3-1)

Daí,

\frac{m^3-1}{(m^3+1)(m^3-1)} = \frac{1}{m^3+1}

Mas você não fez errado.

Note que se você dividir \frac{m^2+m+1}{m^4+m^2+1} obterá \frac{1}{m^2-m+1} e, portanto, o resultado será

\frac{1}{(m+1)(m^2-m+1} = \frac{1}{m^3+1}.

Para dividir os polinômios basta observar seus graus. Já que o polinômio do numerador é de grau 2 e do denominador de grau 4 então o quaociente entre eles será um polinômio de grau zero dividido por um de grau 2.

Daí, suponha que existam reais a, b e c tais que

\frac{m^2+m+1}{m^4+m^2+1} = \frac{1}{am^2+bm+c}

Sem dificuldades você concluirá que

am^4 + (a+b) m^3 + (a+b+c)m^2 + m(c+b) + c = 0

de onde a=1, b=-1 e c=1 por igualdade de polinômios.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: