• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Frações Algébricas] Como simplifico essa fração?

[Frações Algébricas] Como simplifico essa fração?

Mensagempor Kah » Qua Mar 18, 2015 17:44

Olá! Alguém pode me ajudar, por favor?

Como simplifico essa fração algébrica?

Sei que no numerador tenho uma diferença entre quadrados e no denominador um diferença entre cubos. Fiz assim:

Numerador:

m³ - 1 = (m - 1)(m² + m + 1)

Denominador

m^6 - 1 = (m²)³ - (1)³ = (m² - 1)(m^4 + m² + 1) = [(m + 1)(m - 1)]( m^4 + m² + 1 )

Simplifiquei (m - 1) do numerador com o (m - 1) do denominador, ficando assim:

(m² + m + 1)/ (m + 1)( m^4 + m² + 1 )

Não consigo sair disso :/

O que fiz de errado?
Anexos
Mat.png
Mat.png (3.53 KiB) Exibido 2154 vezes
Kah
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Mar 18, 2015 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Frações Algébricas] Como simplifico essa fração?

Mensagempor Russman » Qua Mar 18, 2015 22:38

Pensei uma forma mais direta.

Se você tomar m^6 -1 = (m^3)^2 - 1^2 = (m^3+1)(m^3-1)

Daí,

\frac{m^3-1}{(m^3+1)(m^3-1)} = \frac{1}{m^3+1}

Mas você não fez errado.

Note que se você dividir \frac{m^2+m+1}{m^4+m^2+1} obterá \frac{1}{m^2-m+1} e, portanto, o resultado será

\frac{1}{(m+1)(m^2-m+1} = \frac{1}{m^3+1}.

Para dividir os polinômios basta observar seus graus. Já que o polinômio do numerador é de grau 2 e do denominador de grau 4 então o quaociente entre eles será um polinômio de grau zero dividido por um de grau 2.

Daí, suponha que existam reais a, b e c tais que

\frac{m^2+m+1}{m^4+m^2+1} = \frac{1}{am^2+bm+c}

Sem dificuldades você concluirá que

am^4 + (a+b) m^3 + (a+b+c)m^2 + m(c+b) + c = 0

de onde a=1, b=-1 e c=1 por igualdade de polinômios.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.