por killerkill » Seg Mar 16, 2015 17:24
Pessoal, estou tentando entender a ideia intuitiva de um campo vetorial conservativo pro caso de integrais de linha. Meus conceitos estão muito embaralhados e gostaria da ajuda de alguém pra ajudar a organiza-los. Pelo que eu entendi até agora no meu curso, a integral de linha pode ser interpretada de varias formas, como uma área sobre uma curva até a função (espécie de cortina), como densidade em determinado ponto da curva e na parte onde estou tendo mais dificuldades, em um campo vetorial. Nessa ultima eu me embolo completamente quando se envolve o conceito de campo conservativo. Em uma curva fechada C1, imerso num campo conservativo, se selecionarmos um ponto "A" pertencente a essa curva e realizarmos uma volta completa na curva, a integral de linha (ou deveria eu dizer trabalho?) sobre essa curva é igual a zero. Ou seja, independe do caminho. Acho que não entendi o porquê. O único caso que consegui imaginar tentando fazer uma lógica foi o seguinte: imaginei uma curva em 3 dimenões imersa no campo gravitacional. Se eu partir de um ponto P1 na parte mais alta da curva(mais distante do centro do campo) e largar uma partícula imaginária, a força gravitacional irá atuar até que ela chegue ao ponto mais baixo da curva realizando um trabalho W1. Pro caso dessa partícula retornar ao ponto P1 o trabalho seria W2, de mesma intensidade que W1 porém agora contrária ao campo, ou seja, com valor negativo. Nesse caso, intuitivamente fica claro pensar que essa integral seria igual a zero. Essa ideia é correta?
-
killerkill
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Ago 09, 2011 22:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eg. Elétrica
- Andamento: cursando
por adauto martins » Sex Mar 20, 2015 12:39
seja

,onde V um espaço vetorial sobre um corpo K...
f e dito conservativo

uma funçao

tal q.

,onde

e o gradiente u em V...usando o teorema de stokes,mostra-se q. ...

,ou seja vai independer dos pontos inicias e finais,ou indepedente do caminho...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo Vetorial
por roger0196 » Seg Abr 04, 2011 15:02
- 6 Respostas
- 5112 Exibições
- Última mensagem por Jackie

Ter Abr 26, 2011 20:20
Geometria Analítica
-
- Calculo Vetorial
por Renato Lima » Qua Abr 27, 2011 22:21
- 1 Respostas
- 1967 Exibições
- Última mensagem por LuizAquino

Qua Abr 27, 2011 23:12
Geometria Analítica
-
- GA e Calculo Vetorial
por camposhj » Sex Out 07, 2011 00:41
- 3 Respostas
- 2311 Exibições
- Última mensagem por LuizAquino

Sex Out 07, 2011 13:06
Geometria Analítica
-
- Cálculo Vetorial
por Jhenrique » Ter Jul 02, 2013 19:10
- 0 Respostas
- 1511 Exibições
- Última mensagem por Jhenrique

Ter Jul 02, 2013 19:10
Cálculo: Limites, Derivadas e Integrais
-
- cálculo vetorial
por fasaatyro » Sáb Mai 02, 2015 12:02
- 0 Respostas
- 1202 Exibições
- Última mensagem por fasaatyro

Sáb Mai 02, 2015 12:02
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.