• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quantos pode ser formados

Quantos pode ser formados

Mensagempor leticiapires52 » Qua Fev 25, 2015 20:25

Maria e José fazem parte de um grupo de dez pessoas, sete das quais serão escolhidas para formarem um júri em que todos os jurados terão funções idênticas. Do total de júris que podem ser formados, quantos contêm Maria e não contém José?

a) 8

b) 16

c) 20

d) 56

e) 28
leticiapires52
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qua Fev 12, 2014 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Quantos pode ser formados

Mensagempor ednaldo raposeiro » Qua Fev 25, 2015 20:52

M J 1 2 3 4 5 6 7 8

M _ _ _ _ _ _

C 8, 6

8! / (6! . 2!)

8 . 7 . 6! / (6! . 2.1)

56 / 2 = 28
ednaldo raposeiro
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Fev 19, 2015 08:06
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.