• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral trigonométrica]

[Integral trigonométrica]

Mensagempor vitor_jo » Ter Fev 10, 2015 02:09

Senhores, uma questão do Guidorizzi,
\int_{0;\pi/3 }^{}{}sexcos²x dx [definida de 0 a pi/3]

Eu cheguei até -cos³x/3| de 1/2 a 1, mas não sei como proceder para o resultado (R.:7/24)

Também findei em uma outra, com sen^(6)x/6 | de 0 a 1/2 e não sei como seguir...

Obrigado desde já.
vitor_jo
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qua Jan 14, 2015 05:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Integral trigonométrica]

Mensagempor vitor_jo » Ter Fev 10, 2015 02:09

[é senxcos²x]
vitor_jo
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qua Jan 14, 2015 05:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Integral trigonométrica]

Mensagempor Russman » Ter Fev 10, 2015 04:00

A integral é

I =\int_{0}^{\frac{\pi}{3}}\sin(x) \cos^2(x)dx

[I =\int_{0}^{\frac{\pi}{3}}\sin(x) \cos^2(x)dx ]

Se sim, faça a substituição u(x) = \cos(x). Daí, du = - \sin(x) dx e

I =\int_{0}^{\frac{\pi}{3}}\sin(x) \cos^2(x)dx = -\int_{u(0)}^{u\left ( \frac{\pi}{3} \right )}u^2 du

cuja forma final é facilmente calculável.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral trigonométrica]

Mensagempor vitor_jo » Ter Fev 10, 2015 14:19

Quando você realiza essa substituição, tem de se mudar o intervalo, não?
De modo que cos(x)=u
cos0=1=u
cos(pi/3)=cos(60)=1/2=u
Ou seja, passo para a definida de 1/2 a 1.
A resposta não bate.
vitor_jo
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qua Jan 14, 2015 05:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Integral trigonométrica]

Mensagempor Russman » Ter Fev 17, 2015 18:15

Isto. Eu mudei o intervalo de integração como você disse, só deixei para você calcular.

A integral de x^2 é (1/3)x^3. De 1/2 até 1 será

(1/3)((1/8) - 1) = (1/3)(-7/8) = -7/24

O sinal negativo some com o negativo da mudança de variável.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral trigonométrica]

Mensagempor vitor_jo » Qua Fev 18, 2015 04:48

É vero, eu tinha me confundido. Obrigado.
vitor_jo
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qua Jan 14, 2015 05:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Integral trigonométrica]

Mensagempor Russman » Qua Fev 18, 2015 06:55

(:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?