por Guga1981 » Qua Fev 11, 2015 16:46
Se o conjunto A valer 1 (por exemplo) e o conjunto B valer 2 (por exemplo) então A

B = {}, certo? Entretanto a afirmativa III está errada (segundo o gabarito que diz que a resposta do exercício é a letra e).
(CESESP-82) Considere as afirmações abaixo, onde P(x) é o conjunto das partes de um conjunto X.
I - Existe A

P(x) tal que B

A = B qualquer que seja B

P(x).
II - Qualquer que seja A

P(x), existe B

P(x) tal que A

B = {}.
III - Quaisquer que sejam A e B em P(x), tem-se A

B = {}.
IV - Existe A

P(x) tal que B U A = B, qualquer que seja B

P(x).
Assinale, então, a alternativa correta:
a) apenas I é verdadeira.
b) apenas IV é verdadeira.
c) I, II e III são verdadeiras.
d) II e IV são falsas.
e) apenas III é falsa.
-
Guga1981
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Dom Jan 18, 2015 13:27
- Localização: São Vicente-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
-
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Confirmação de Enunciado
por Guga1981 » Qua Fev 11, 2015 18:43
- 1 Respostas
- 1203 Exibições
- Última mensagem por DanielFerreira

Qua Fev 11, 2015 23:28
Funções
-
- Dúvida sobre enunciado
por GURGEL777 » Ter Mai 31, 2011 12:27
- 2 Respostas
- 2239 Exibições
- Última mensagem por GURGEL777

Ter Mai 31, 2011 13:18
Estatística
-
- Interpretação do enunciado Geometria
por opiniao » Qui Nov 01, 2012 11:29
- 3 Respostas
- 3319 Exibições
- Última mensagem por young_jedi

Qui Nov 01, 2012 14:10
Geometria Espacial
-
- DERIVADAS PARCIAIS, enunciado confuso
por inkz » Seg Nov 26, 2012 14:39
- 1 Respostas
- 2008 Exibições
- Última mensagem por MarceloFantini

Seg Nov 26, 2012 19:16
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida quanto ao enunciado: Subespaços
por Leonardomaiaavila » Ter Fev 25, 2014 01:18
- 0 Respostas
- 1136 Exibições
- Última mensagem por Leonardomaiaavila

Ter Fev 25, 2014 01:18
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.