• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida no edital, "relções e funções"

Dúvida no edital, "relções e funções"

Mensagempor bianca725 » Qua Fev 04, 2015 08:19

No edital de um concurso público que vou fazer. Encontra-se o seguinte tópico:

4- Relações e funções;

O que significa isso? Essas duas palavras juntas formam uma matéria? Ou terei que estudar funções, e depois relações... Estou com MUITA dúvida por favor me explique.
bianca725
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Fev 04, 2015 08:11
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tecnico em Administração
Andamento: formado

Re: Dúvida no edital, "relções e funções"

Mensagempor adauto martins » Qua Fev 04, 2015 18:13

para saber sobre relaçao e bom saber sobre produto cartesiano...
1)produto cartesiano:dados A,Bconjuntos numericos,algebricos...
AXB={(a,b)/a\in A,b\in B},ou seja e o conjuntos de todos os pares ordenados (a,b)...
2)relaçao:R:A\rightarrow Be qquer subconjuto de AXB
3)funçao:f:A\rightarrow Beh qquer relaçao q. associa todo elemento de A a um unico elemento de B
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.