• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo de integrais triplas com coordenadas esféricas

Calculo de integrais triplas com coordenadas esféricas

Mensagempor Fernandobertolaccini » Sex Jan 23, 2015 11:44

Calcular \int_{}^{}\int_{}^{}\int_{}^{}(x^2+y^2)dxdydz onde os limites de integração são:
-R\leq x \leq R ; -\sqrt[]{R^2-x^2} \leq y \leq \sqrt[]{R^2-x^2}; 0 \leq z \leq \sqrt[]{R^2-x^2-y^2}


Obs: tem que passar para coordenadas esféricas.

Resp: 4piR^5/15


Minha resposta deu 16piR^2/15, queria a resolução para saber no que errei


Obrigado !
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Calculo de integrais triplas com coordenadas esféricas

Mensagempor adauto martins » Ter Jan 27, 2015 20:16

faz-se:
x=Rsen\phi.cos\theta\Rightarrow dx=-R.cos\phi.cos\theta d\phi
y=Rsen\phi.sen\theta\Rightarrow dy=R.cos\phi.sen\theta d\phi
z=Rcos\phi\Rightarrow dz=-R.sen\phi d\phi...
R\succeq 0,\phi\in[0,\pi],\theta\in [0,2\pi]...
\phi=0\Rightarrow x=0,\phi=\pi\Rightarrow x=0
\phi=0\Rightarrow y=0,\phi=\pi\Rightarrow y=0...\phi=0\Rightarrow z=1,\phi=\pi\Rightarrow z=-1
I=\int_{0}^{R}(\int_{-R}^{R}(\int_{-R}^{R}({Rsen\phi.cos\theta})^{2}+({Rsen\phi.sen\theta})^{2}.{R}^{3}{cos\phi}^{2}.sen\phi.cos\theta.sen\theta d\phi)d\phi)d\phi...ai meu amigo eh calcular em relaçao a \phi,e depois em relaçao a \theta,analogamente q. foi feito em \phi...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}